Skip to main content
Log in

Hydrological variability and long-term floristic-structural modifications in different habitats of a tropical semi-deciduous forest

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Shifts in hydrological regimes alter river flow rates and flood pulses, decrease environmental heterogeneity and the floristic-structural complexity of associated plant communities. We tested the hypothesis that drought events affect plant community composition and structure at a small-scale within a riparian fragment towards a reduction in floristic-structural complexity. The tree community was sampled in three habitats (wet, transitional and dry) and monitored in seven inventories carried out between 1991 and 2018. Hydrological variations were evaluated through annual rainfalls, river flow rates and water level data. The species richness and the detrended correspondence analysis axes were used to characterise the temporal modifications in floristic composition. Community structure was described in terms of biomass: accumulated, growth of survivors, mortality and recruitment. Generalised linear mixed models were fitted to evaluate the effects of time and environment in community. It was concluded that the climate has become drier in recent years due to declining precipitation that has affected flow rates and water levels. The floristic-structural complexity of the study fragment was maintained during the monitoring period. However, prolonged and extreme drought events displayed the potential to impact floristic-structural patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Oliveira-Filho et al. (1994)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Bloem SJV, Waring BG, Xu X, Powers JS (2017) Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ Res Lett 12(2): 023001

  • Bartón K (2009) MuMIn: multi-model inference. R package. https://cran.r-project.org/web/packages/mumin/index.html. Accessed 20 May 2019

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Google Scholar 

  • Bjørnstad ON (2016) Package ‘ncf’. https://cran.r-project.org/package=ncf. Accessed 20 May 2019

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135

    Article  PubMed  Google Scholar 

  • Bonal D, Burban B, Stahl C, Wagner F, Hérault B (2016) The response of tropical rainforests to drought-lessons from recent research and future prospects. Ann For Sci 73(1):27–44

    Article  PubMed  Google Scholar 

  • Brienen RJ, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Martinez RV, Alexiades M, Dávila PA, Andrade A, Aragão LEOC, Araujo-Murakami A, Arroyo L, Aymard GA, Bánki OS, Baraloto C, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chao KJ, Chave J, Comiskey JA, Valverde FC, Costa L, Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Coronado ENH, Keeling H, Killen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendonza C, Neill DA, Nogueira EM, Núñez P, Camacho NCP, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Ângulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Vieira ICG, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519(7543):344–348

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) A practical information-theoretic approach: model selection and multimodel inference. Springer, New York, p 488

    Google Scholar 

  • Cai W, Cowan T (2008) Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys Res Lett 35:1–5

    Article  Google Scholar 

  • Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin DS, Stewardson M, Roberts J, Parsons M, Williams SE (2013) Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16(3):359–381

    Article  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrízar A, Mugasha WA, Muller-Landau HC, Menicuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vielledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20(10):3177–3190

    Article  Google Scholar 

  • Clark JS, Iverson L, Woodall CW, Allen CD, Bell DM, Bragg DC, D’Amato AW, Davis FW, Hersh MH, Ibanez I, Jackson ST, Matthews S, Pederson N, Peters M, Schwartz MW, Waring KM, Zimmermann NE (2016) The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob Change Biol 22(7):2329–2352

    Article  Google Scholar 

  • Condit R (1998) Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Potential impacts of climate change on tropical forest ecosystems. Springer, Dordrecht, pp 273–287

    Chapter  Google Scholar 

  • Dantas AAA, Carvalho LGD, Ferreira E (2007) Climatic classification and tendencies in Lavras region. MG Ciênc Agrotec 31(6):1862–1866

    Article  Google Scholar 

  • Dexter KG, Pennington RT, Oliveira-Filho AT, Bueno ML, Silva de Miranda PL, Neves DM (2018) Inserting tropical dry forests into the discussion on biome transitions in the tropics. Front Ecol Evol 6:104

    Article  Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124(4):319–333

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquez JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Doughty CE, Metcalfe DB, Girardin CAJ, Amézquita FF, Cabrera DG, Huasco WH, Silva-Espejo JE, Araujo-Murakami A, Costa MC, Rocha W, Feldpausch TR, Mendoza ALM, Costa ACL, Meir P, Phillips OL, Malhi Y (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519(7541):78–82

    Article  CAS  PubMed  Google Scholar 

  • Enquist BJ, Enquist CA (2011) Longterm change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob Change Biol 17(3):1408–1424

    Article  Google Scholar 

  • Fauset S, Baker TR, Lewis SL, Feldpausch TR, AffumBaffoe K, Foli EG, Swaine MD (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15(10):1120–1129

    Article  PubMed  Google Scholar 

  • Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB (2011) Directional changes in the species composition of a tropical forest. Ecology 92(4):871–882

    Article  PubMed  Google Scholar 

  • Feldpausch TR, Phillips OL, Brienen RJW, Gloor E, Lloyd J, LopezGonzalez G, Monteagudo-Mendoza A, Malhi Y, Alarcón A, Dávila EA, Alavarez-Loayza P, Andrade A, Aragao LEOC, Arroyo L, Aymard GA, Baker TR, Baraloto C, Barroso J, Bonal D, Castro W, Chama V, Chave J, Domingues TF, Fauset S, Groot N, Coronado EH, Laurance S, Laurance WF, Lewis SL, Licona JC, Marimon BS, Marimon-Junior BH, Bautista CM, Neill DA, Oliveira EA, Santos CO, Camacho NCP, Pardo-Molina G, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Réjou-Méchain M, Rudas A, Saiz G, Salomão RP, Silva-Espejo JE, Silveira M, ter Steege H, Stropp J, Terborgh J, Thomas-Caesar R, van der Heijden GMF, Martinez RV, Vilanova E, Vos VA (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30(7):964–982

    Article  CAS  Google Scholar 

  • Fischer EM, Knutti R (2014) Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys Res Lett 41(2):547–554

    Article  Google Scholar 

  • Garssen AG, Verhoeven JT, Soons MB (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta analysis. Freshw Biol 59(5):1052–1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilherme FA, Oliveira-Filho AT, Appolinário V, Bearzoti E (2004) Effects of flooding regime and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil. Plant Ecol 174(1):19

    Article  Google Scholar 

  • Hisano M, Searle EB, Chen HY (2018) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev 93(1):439–456

    Article  PubMed  Google Scholar 

  • Hubbell SP, Foster RB (1992) Short-term dynamics of a neotropical forest: Why ecological research matters to tropical conservation and management. Oikos 48–61

  • IBGE (2012) Manual técnico da vegetação brasileira. Manuais técnicos em geociências. IBGE, Brasil, 271 p

  • INMET (2018) Instituto Nacional de Meteorologia Banco de Dados Meteorológicos para Ensino e Pesquisa—BDMEP. http://www.inmet.gov.br/portal. Accessed 05 May 2019

  • IPCC (2007) Climate change 2007—the physical science basis: working group I contribution to the fourth assessment report of the IPCC. IPCC Secretariat, World Meteorological Organisation, Geneva, 996 p

  • Itoh A, Nanami S, Harata T, Ohkubo T, Tan S, Chong L, Yamakura T (2012) The effect of habitat association and edaphic conditions on tree mortality during El Niñoinduced drought in a Bornean dipterocarp forest. Biotropica 44(5):606–617

    Article  Google Scholar 

  • Johnson WC (1994) Woodland expansions in the Platte River, Nebraska: patterns and causes. Ecol Monogr 64(1):45–84

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106(1):110–127

    Google Scholar 

  • Koponen P, Nygren P, Sabatier D, Rousteau A, Saur E (2004) Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecol 173(1):17–32

    Article  Google Scholar 

  • Kushwaha CP, Singh KP (2005) Diversity of leaf phenology in a tropical deciduous forest in India. J Trop Ecol 21(1):47–56

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. Stat Softw 82(13)

  • Lenth R, Singmann H, Buerkner JL, Herve M (2018) Package emmeans: estimated marginal means, aka least-squares means R package version 123. http://www.cranr-projectorg/web/packages/emmeans/indexhtml. Accessed 20 May 2019

  • Lewis SL, Lloyd J, Sitch S, Mitchard ET, Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst 40:529–549

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 Amazon drought. Science 331(6017):554–554

    Article  CAS  PubMed  Google Scholar 

  • Lisi CS, Fo MT, Botosso PC, Roig FA, Maria VR, Ferreira-Fedele L, Voigt AR (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29(2):189–207

    Article  Google Scholar 

  • Lytle DA, Merritt DM, Tonkin JD, Olden JD, Reynolds LV (2017) Linking river flow regimes to riparian plant guilds: a community wide modeling approach. Ecol Appl 27(4):1338–1350

    Article  PubMed  Google Scholar 

  • Marcuzzo FFN, Melo DCR, Rocha HM (2011) Spatio-temporal distribution and seasonality of rainfall in Mato Grosso state. Revista Brasileira De Recursos Hídricos 16(4):157–167

    Article  Google Scholar 

  • Merritt DM, Scott ML, Poff NL, Auble GT, Lytle DA (2010) Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation flow response guilds. Freshw Biol 55(1):206–225

    Article  Google Scholar 

  • Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559(7715):527–534

    Article  CAS  PubMed  Google Scholar 

  • Nishimua TB, Suzuki E, Kohyama T, Tsuyuzaki S (2007) Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought. Plant Ecol 188(2):165–177

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package R package version 117–4. http://CRAN.R-project.org/package=vegan. Accessed 20 May 2019

  • Oliveira-Filho AD, Vilela EA, Gavilanes ML, Carvalho DA (1994) Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in Southeastern Brazil. Vegetatio 113(2):99–124

    Article  Google Scholar 

  • Palmer MA, Lettenmaier DP, Poff NL, Postel SL, Richter B, Warner R (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manage 44(6):1053–1068

    Article  PubMed  Google Scholar 

  • Perry LG, Andersen DC, Reynolds LV, Nelson SM, Shafroth PB (2012) Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Glob Change Biol 18(3):821–842

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47(11):769–784

    Article  Google Scholar 

  • Poorter L, van der Sande MT, Arets EJ, Ascarrunz N, Enquist BJ, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA, Muñoz R, Nytch CJ, Oliveira AA, Pérez-García A, Prado-Junior J, Rodríguez-Velázques J, Ruschel AR, Salgado-Negret B, Schiavini I, Swenson NG, Tenorio EA, Thompson J, Toledo M, Uriarte M, van der Hout P, Zimmerman JK, Peña-Claros M (2017) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 26(12):1423–1434

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-projectorg/. Accessed 20 May 2019

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian atlantic forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153

    Article  Google Scholar 

  • Rivaes R, Rodríguez-González PM, Albuquerque A, Pinheiro AN, Egger G, Ferreira MT (2013) Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology 6(3):413–424

    Article  Google Scholar 

  • Roitman I, Vanclay JK, Hay JD, Felfili JM (2016) Dynamic equilibrium and decelerating growth of a seasonal Neotropical gallery forest in the Brazilian savanna. J Trop Ecol 32(3):193–200

    Article  Google Scholar 

  • Ruppert JC, Harmoney K, Henkin Z, Snyman HA, Sternberg M, Willms W, Linstädter A (2015) Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob Change Biol 21(3):1258–1270

    Article  Google Scholar 

  • Santiago LS, Bonal D, De Guzman ME, Ávila-Lovera E (2016) Drought survival strategies of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology. Springer International Publishing, Berlin, pp 243–258

    Chapter  Google Scholar 

  • Santos ABM, Carvalho WAC, Morel JD, Souza CR, Santos RM, Silva TMC, Silva KG (2018) Variations in precipitation and the equilibrium dynamics of a tropical forest tree community in South-Eastern Brazil. J Trop For Sci 30(4):597–605

    Google Scholar 

  • Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare species bias and its risks for conservation. Biol Conserv 142:1201–1208

    Article  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37(1):153–161

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp J, Hickler T (2015) Is drought induced forest dieback globally increasing? J Ecol 103(1):31–43

    Article  Google Scholar 

  • Teixeira ADP, Assis MA (2005) Floristic and phytosociological characterization of the arboreal and shruby stratum of a swamp forest in Rio Claro (SP), Brazil. Braz J Bot 28(3):467–476

    Article  Google Scholar 

  • Teixeira ADP, Assis MA, Siqueira FR, Casagrande JC (2008) Tree species composition and environmental relationships in a Neotropical swamp forest in Southeastern Brazil. Wetl Ecol Manag 16(6):451–461

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29(3):308–330

    Article  Google Scholar 

  • Toledo M, Poorter L, PeñaClaros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J Ecol 99(1):254–264

    Article  Google Scholar 

  • Van Rooy MP (1965) A rainfall anomaly index independent of time and space. Notos 14:43–48

    Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20(10):553–560

    Article  PubMed  Google Scholar 

  • Zhang Q, Kong DD, Singh VP, Shi PJ (2017) Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Glob Planet Change 152:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisson Borges Miranda Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Coordination for the Improvement of Higher Education Personnel), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, National Council for Scientific and Technological Development), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Foundation for Supporting Research of the State of Minas Gerais) and scholarship grant of the Federal University of Lavras (Universidade Federal de Lavras).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.B.M., Maia, V.A., de Souza, C.R. et al. Hydrological variability and long-term floristic-structural modifications in different habitats of a tropical semi-deciduous forest. J. For. Res. 33, 801–811 (2022). https://doi.org/10.1007/s11676-021-01408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01408-7

Keywords

Navigation