Skip to main content

Drought Survival Strategies of Tropical Trees

  • Chapter
  • First Online:
Tropical Tree Physiology

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

Climate change is predicted to increase the occurrence of extreme droughts, which are associated with elevated mortality rates in tropical trees. Drought-induced mortality is thought to occur by two main mechanisms: hydraulic failure or carbon starvation . This chapter focuses on the strategies that plants use to survive these two drought-induced mortality mechanisms and how these mechanisms are distributed among the immense diversity of tropical tree species. The traits that tropical trees may use to survive drought include (1) xylem that is resistant to drought-induced cavitation , (2) high sapwood capacitance that protects xylem from critically low water potentials , (3) drought deciduousness, (4) photosynthetic stems that have the potential to assimilate carbon at greater water-use efficiency than leaves, (5) deep roots, (6) regulation of gas exchange to reduce leaf water loss or to maintain photosynthesis at low leaf water potential and (7) when all else fails, low cuticular conductance from exposed tissues during extended drought. To date, most research has focused on deciduousness, resistant xylem, soil water, gas exchange behavior and sapwood capacitance, whereas little is known about the role of photosynthetic stems or cuticular conductance during extreme extended drought, making these processes a high priority for a complete understanding of tropical tree physiology during drought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Allison GB (1982) The relationship between O-18 and deuterium in water in sand columns undergoing evaporation. J Hydrol 55:163–169

    Article  CAS  Google Scholar 

  • Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109:233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ávila E, Herrera A, Tezara W (2014) Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 52:3–15

    Article  Google Scholar 

  • Barnard DM, Meinzer FC, Lachenbruch B, McCulloh KA, Johnson DM, Woodruff DR (2011) Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ 34:643–654

    Article  PubMed  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  CAS  PubMed  Google Scholar 

  • Bonal D, Guehl JM (2001) Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Funct Ecol 15:490–496

    Article  Google Scholar 

  • Burgess SSO, Dawson TE (2007) Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol 174:626–636

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012a) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012b) Global convergence in the vulnerability of forests to drought. Nature 491:752

    Google Scholar 

  • Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:2755–2765

    Article  PubMed  Google Scholar 

  • Comstock JP, Ehleringer JR (1988) Contrasting photosynthetic behavior in leaves and twigs of Hymenoclea salsola, a green-twigged warm desert shrub. Am J Bot 75:1360–1370

    Article  Google Scholar 

  • Condit R (1998) Ecological implications of changes in drought patterns: Shifts in forest composition in Panama. Clim Change 39:413–427

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1996) Assessing the response of plant functional types to climatic change in tropical forests. J Veg Sci 7:405–416

    Article  Google Scholar 

  • Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2013) Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Change 3:63–67

    Article  Google Scholar 

  • Doughty CE, Metcalfe DB, Girardin CAJ, Farfan Amezquita F, Galiano Cabrera D, Huaraca Huasco W, Silva-Espejo JE, Araujo-Murakami A, da Costa MC, Rocha W, Feldpausch TR, Mendoza ALM, da Costa ACL, Meir P, Phillips OL, Malhi Y (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519:78–82

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082

    Article  CAS  Google Scholar 

  • Engelbrecht BMJ, Kursar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees Struct Funct 19:312–321

    Article  Google Scholar 

  • Engelbrecht BMJ, Dalling JW, Pearson TRH, Wolf RL, Galvez DA, Koehler T, Tyree MT, Kursar TA (2006) Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia 148:258–269

    Article  PubMed  Google Scholar 

  • Estrada-Medina H, Santiago LS, Graham RC, Allen MF, Jiménez-Osornio JJ (2013) Source water, phenology and growth of two tropical dry forest tree species growing on shallow karst soils. Trees Struct Funct 27:1297–1307

    Article  Google Scholar 

  • Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB (2011) Directional changes in the species composition of a tropical forest. Ecology 92:871–882

    Article  PubMed  Google Scholar 

  • Field CB (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF, Almeida S, Meir P (2007) The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13:2361–2378

    Article  Google Scholar 

  • Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P (2006) Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–165

    Article  PubMed  Google Scholar 

  • Franco AC, Lüttge U (2002) Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131:356–365

    Article  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brannstrom A, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica 36:703–743

    Article  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hartmann H, Adams HD, Anderegg WR, Jansen S, Zeppel MJ (2015) Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytol 205:965–969

    Article  PubMed  Google Scholar 

  • Hasselquist NJ, Allen MF, Santiago LS (2010) Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Höltta T, Vesala T, Sevanto S, Peramaki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Munch hypothesis. Trees Struct Funct 20:67–78

    Article  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Jackson PC, Cavelier J, Goldstein G, Meinzer FC, Holbrook NM (1995) Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101:197–203

    Article  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    Article  CAS  Google Scholar 

  • Kitajima K, Augspurger CK (1989) Seed and seedling ecology of a monocarpic tropical tree, Tachigalia versicolor. Ecology 70:1102–1114

    Article  Google Scholar 

  • Kumagai T, Porporato A (2012) Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? Plant Cell Environ 35:61–71

    Article  PubMed  Google Scholar 

  • Kursar TA, Engelbrecht BMJ, Burke A, Tyree MT, El Omari B, Giraldo JP (2009) Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct Ecol 23:93–102

    Article  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266

    Article  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu CG, Domec JC, Höltta T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol 200:304–321

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Goldstein G (1996) Scaling up from leaves to whole plants and canopies for photosynthetic gas exchange. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, New York, pp 114–138

    Chapter  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Meinzer FC, Woodruff DR, Domec JC, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41

    Article  PubMed  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Dasilva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nepstad DC, Moutinho P, Dias MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K (2002) The effects of partial through fall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res Atmos 107

    Google Scholar 

  • Nilsen ET (1995) Stem photosynthesis: extent, patterns and role in plant carbon economy. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 223–240

    Chapter  Google Scholar 

  • O’Brien MJ, Burslem DFRP, Caduff A, Tay J, Hector A (2015) Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability. New Phytol 205:1083–1094

    Article  PubMed  Google Scholar 

  • Osmond CB, Smith SD, Guiying B, Sharkey TD (1987) Stem photosynthesis in a desert ephemeral, Eriogonum inflatum. Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions. Oecologia 72:542–549

    Article  Google Scholar 

  • Paciorek CJ, Condit R, Hubbell SP, Foster RB (2000) The demographics of resprouting in tree and shrub species of a moist tropical forest. J Ecol 88:765–777

    Article  Google Scholar 

  • Pfanz H (2008) Bark photosynthesis. Trees Struct Funct 22:137–138

    Article  Google Scholar 

  • Phillips OL, van der Heijden G, Lewis SL, Lopez-Gonzalez G, Aragao L, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Davila EA, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, de Oliveira ACA, Chao KJ, Cardozo ND, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jimenez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, Morel A, Vargas PN, Patino S, Peh KSH, Cruz AP, Prieto A, Quesada CA, Ramirez F, Ramirez H, Rudas A, Salamao R, Schwarz M, Silva J, Silveira M, Slik JWF, Sonke B, Thomas AS, Stropp J, Taplin JRD, Vasquez R, Vilanova E (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    Article  PubMed  Google Scholar 

  • Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke J, Santiago LS (2016) Multiple strategies for drought survival among woody plant species. Funct Ecol. doi:10.1111/1365-2435.12518

    Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Pons TL, Welschen RAM (2003) Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol 23:937–947

    Article  CAS  PubMed  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilo P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ 27:1065–1076

    Article  Google Scholar 

  • Santiago LS, Mulkey SS (2005) Leaf productivity along a precipitation gradient in lowland Panama: patterns from leaf to ecosystem. Trees 19:349–356

    Article  Google Scholar 

  • Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502

    Article  PubMed  Google Scholar 

  • Saveyn A, Steppe K, Ubierna N, Dawson TE (2010) Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant Cell Environ 33:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Schimper AFW (1903) Plant geography upon a physiological basis. Clarendon, Oxford

    Book  Google Scholar 

  • Schreiber L, Riederer M (1996a) Determination of diffusion coefficients of octadecanoic acid in isolated cuticular waxes and their relationship to cuticular water permeabilities. Plant Cell Environ 19:1075–1082

    Article  CAS  Google Scholar 

  • Schreiber L, Riederer M (1996b) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    Article  Google Scholar 

  • Slik JWF (2004) El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114–120

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    Article  PubMed  Google Scholar 

  • Stahl C, Hérault B, Rossi V, Burban B, Bréchet C, Bonal D (2013) Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter? Oecologia 173:1191–1201

    Article  PubMed  Google Scholar 

  • Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343

    Article  CAS  PubMed  Google Scholar 

  • Tinoco-Ojanguren C (2008) Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran desert. J Arid Environ 72:127–140

    Article  Google Scholar 

  • Trumbore SE, Davidson EA, Decamargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochem Cycles 9:515–528

    Article  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wittmann C, Pfanz H (2008) Antitranspirant functions of stem periderms and their influence on corticular photosynthesis under drought stress. Trees Struct Funct 22:187–196

    Article  CAS  Google Scholar 

  • Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Christopher Baraloto, Bettina Engelbrecht, Gregory Goldsmith, Omar Lopez, Yadvinder Malhi, Patrick Meir, John Sperry, Klaus Winter and Joe Wright for enlightening discussions on the topics presented; Leonor Álvarez-Cansino, Benoît Burban, Jean-Yves Goret for work together in the field and lab, and the Botany & Plant Sciences Department of the University of California , Smithsonian Tropical Research Institute, Labex CEBA (Centre d’Etude de la Biodiversité Amazonienne; Investissement d’Avenir grant from the ANR, ANR-10-LABX-0025), and the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis S. Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santiago, L.S., Bonal, D., De Guzman, M.E., Ávila-Lovera, E. (2016). Drought Survival Strategies of Tropical Trees. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_11

Download citation

Publish with us

Policies and ethics