Skip to main content
Log in

Genome engineering technologies for targeted genetic modification in plants

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Well-established targeted technologies to engineer genomes such as zinc-finger nuclease-based editing (ZFN), transcription activator-like effector nuclease-based editing (TALEN), and clustered regularly interspaced short palindromic repeats and associated protein system-based editing (CRISPR/Cas) are proving to advance basic and applied research in numerous plant species. Compared with systems using ZFNs and TALENs, the most recently developed CRISPR/Cas system is more efficient due to its use of an RNA-guided nuclease to generate double-strand DNA breaks. To accelerate the applications of these technologies, we provide here a detailed overview of these systems, highlight the strengths and weaknesses of each, summarize research advances made with these technologies in model and crop plants, and discuss their applications in plant functional genomics. Such targeted approaches for genetically modifying plants will benefit agricultural production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281

    Article  PubMed  CAS  Google Scholar 

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA, Cao Z, Carroll C, Pawelczak KS, Blue R, West K, Rowland LM, Perkins D, Samuel P, Dewes CM, Shen L, Sriram S, Evans SL, Rebar EJ, Zhang L, Gregory PD, Urnov FD, Webb SR, Petolino JF (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134

    Article  PubMed  CAS  Google Scholar 

  • Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM (2015a) Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav 10:e1044191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015b) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand P, Schug A, Wenzel W (2013) Structure based design of protein linkers for zinc finger nuclease. FEBS Lett 587:3231–3235

    Article  PubMed  CAS  Google Scholar 

  • Aouida M, Li L, Mahjoub A, Alshareef S, Ali Z, Piatek A, Mahfouz MM (2015) Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J Biosci Bioeng 120:364–371

    Article  PubMed  CAS  Google Scholar 

  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrangou R (2015) Diversity of CRISPR–Cas immune systems and molecular machines. Genome Biol 16:247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrangou R, Marraffini LA (2014) CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 41:7–19

    Article  PubMed  CAS  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2014) Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. Biol Open 3:42–49

    Article  PubMed  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackburn PR, Campbell JM, Clark KJ, Ekker SC (2013) The CRISPR system-keeping zebrafish gene targeting fresh. Zebrafish 10:116–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boehm CR, Ueda M, Nishimura Y, Shikanai T, Haseloff J (2016) A cyan fluorescent reporter expressed from the chloroplast genome of Marchantia polymorpha. Plant Cell Physiol 57:291–299

    Article  PubMed  CAS  Google Scholar 

  • Bondy-Denomy J, Davidson AR (2014) To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol 22:218–225

    Article  PubMed  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  PubMed  CAS  Google Scholar 

  • Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G (2015) Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3 (Bethesda) 5:1857–1863

    Article  CAS  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10:e0144591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter J, Wiedenheft B (2015) SnapShot: CRISPR-RNA-guided adaptive immune systems. Cell 163(260–260):e261

    Google Scholar 

  • Chandrasegaran S, Carroll D (2015) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963–989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  PubMed  CAS  Google Scholar 

  • Charpentier E, Marraffini LA (2014) Harnessing CRISPR–Cas9 immunity for genetic engineering. Curr Opin Microbiol 19:114–119

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583

    Article  PubMed  CAS  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res 42:6091–6105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Zhang F (2015) Genome engineering using CRISPR–Cas9 system. Methods Mol Biol 1239:197–217

    Article  PubMed  CAS  Google Scholar 

  • Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lange O, Binder A, Lahaye T (2014) From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J 78:753–771

    Article  PubMed  CAS  Google Scholar 

  • Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR–Cas9. Nat Biotechnol 33:390–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Droz-Georget Lathion S, Rochat A, Knott G, Recchia A, Martinet D, Benmohammed S, Grasset N, Zaffalon A, Besuchet Schmutz N, Savioz-Dayer E, Beckmann JS, Rougemont J, Mavilio F, Barrandon Y (2015) A single epidermal stem cell strategy for safe ex vivo gene therapy. EMBO Mol Med 7:380–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  PubMed  CAS  Google Scholar 

  • Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90:49–62

    Article  PubMed  CAS  Google Scholar 

  • Duda K, Lonowski LA, Kofoed-Nielsen M, Ibarra A, Delay CM, Kang Q, Yang Z, Pruett-Miller SM, Bennett EP, Wandall HH, Davis GD, Hansen SH, Frodin M (2014) High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Res 42:e84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47

    Article  PubMed  CAS  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forner J, Pfeiffer A, Langenecker T, Manavella PA, Lohmann JU (2015) Germline-transmitted genome editing in Arabidopsis thaliana using TAL-effector-nucleases. PLoS ONE 10:e0121056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110

    Article  PubMed  CAS  Google Scholar 

  • Grosche C, Funk HT, Maier UG, Zauner S (2012) The chloroplast genome of Pellia endiviifolia: gene content, RNA-editing pattern, and the origin of chloroplast editing. Genome Biol Evol 4:1349–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR–Cas9. J Clin Invest 124:4154–4161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, Wolfe SA (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23:1008–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurr GM, You M (2015) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255

    PubMed  Google Scholar 

  • Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, Du Y, Tate PH, Huang X, Zhang W (2014) Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 11:829–835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen K, Coussens MJ, Sago J, Subramanian S, Gjoka M, Briner D (2012) Genome editing with CompoZr custom zinc finger nucleases (ZFNs). J Vis Exp 64:e3304

    Google Scholar 

  • Hayashi S, Wakasa Y, Ozawa K, Takaiwa F (2016) Characterization of IRE1 ribonuclease-mediated mRNA decay in plants using transient expression analyses in rice protoplasts. New Phytol 210:1259–1268

    Article  PubMed  CAS  Google Scholar 

  • He Z, Proudfoot C, Mileham AJ, McLaren DG, Whitelaw CB, Lillico SG (2015) Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol Bioeng 112:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A (2015) Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 137:5642–5645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  PubMed  CAS  Google Scholar 

  • Hutter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M, Symonds G (2015) CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 7:4186–4203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda T, Tanaka W, Mikami M, Endo M, Hirano HY (2016) Generation of artificial drooping leaf mutants by CRISPR–Cas9 technology in rice. Genes Genet Syst 90:231–235

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  PubMed  CAS  Google Scholar 

  • Jabalameli HR, Zahednasab H, Karimi-Moghaddam A, Jabalameli MR (2015) Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders. Gene 558:1–5

    Article  PubMed  CAS  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9:e99225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82:393–412

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Gurevich V, Levy AA (2013) A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol 82:207–221

    Article  PubMed  CAS  Google Scholar 

  • Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karcher D, Kahlau S, Bock R (2008) Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. RNA 14:217–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Chung JH, Kim HM, Kim DW, Kim H (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14:448–462

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, Wang X, Chen ZL, Sun SS, Small I, Tan BC (2014) Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J Cell Mol Biol 79:797–809

    Article  CAS  Google Scholar 

  • Li JF, Zhang D, Sheen J (2015a) Targeted plant genome editing via the CRISPR/Cas9 technology. Methods Mol Biol 1284:239–255

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015b) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    Article  PubMed  CAS  Google Scholar 

  • Liao JC, Hsieh WY, Tseng CC, Hsieh MH (2016) Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. Photosynth Res 127:151–159

    Article  PubMed  CAS  Google Scholar 

  • Lin CP, Ko CY, Kuo CI, Liu MS, Schafleitner R, Chen LF (2015) Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts: insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS ONE 10:e0129396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J (2014) Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 3:821–835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T (2015) TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE 10:e0143877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    Article  PubMed  CAS  Google Scholar 

  • Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marton I, Honig A, Omid A, De Costa N, Marhevka E, Cohen B, Zuker A, Vainstein A (2013) From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes. Int J Dev Biol 57:639–650

    Article  PubMed  CAS  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikami M, Toki S, Endo M (2015a) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88:561–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikami M, Toki S, Endo M (2015b) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34:1807–1815

    Article  PubMed  CAS  Google Scholar 

  • Mussolino C, Mlambo T, Cathomen T (2015) Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol 24:105–112

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Nejat N, Rookes J, Mantri NL, Cahill DM (2016) Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol 37:229

    Article  PubMed  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  PubMed  CAS  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6:19–40

    CAS  Google Scholar 

  • Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    Article  PubMed  CAS  Google Scholar 

  • Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, Gersbach CA (2015) Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 23:523–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng R, Lin G, Li J (2015) Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 283:1218–1231

    Article  PubMed  CAS  Google Scholar 

  • Petersen B, Niemann H (2015a) Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res 23:7–15

    Article  PubMed  CAS  Google Scholar 

  • Petersen B, Niemann H (2015b) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396

    Article  PubMed  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Gao WQ (2016) Concise review: patient-derived stem cell research for monogenic disorders. Stem Cells 34:44–54

    Article  PubMed  CAS  Google Scholar 

  • Redel BK, Prather RS (2015) Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases. Toxicol Pathol 44:428–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reyon D, Khayter C, Regan MR, Joung JK, Sander JD (2012) Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb1215s100

    Article  PubMed  PubMed Central  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schopke CR, Gocal GF (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J 14:496–502

    Article  PubMed  CAS  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142

    Article  PubMed  CAS  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    Article  PubMed  CAS  Google Scholar 

  • Scott JN, Kupinski AP, Boyes J (2014) Targeted genome regulation and modification using transcription activator-like effectors. FEBS J 281:4583–4597

    Article  PubMed  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  PubMed  CAS  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800

    Article  PubMed  CAS  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53

    Article  PubMed  CAS  Google Scholar 

  • Steentoft C, Bennett EP, Schjoldager KT, Vakhrushev SY, Wandall HH, Clausen H (2014) Precision genome editing: a small revolution for glycobiology. Glycobiology 24:663–680

    Article  PubMed  CAS  Google Scholar 

  • Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:475–481

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR–Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide resistant rice plants through CRISPR/Cas9-mediated homologous recombination of the acetolactate synthase. Mol Plant 9:628

    Article  PubMed  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    Article  PubMed  CAS  Google Scholar 

  • Tingting L, Di F, Lingyu R, Yuanzhong J, Rui L, Keming L (2015) Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus. Yi Chuan 37:1044–1052

    Google Scholar 

  • Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57:747–757

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Xue LJ (2015) CRISPRing into the woods. GM Crops Food 6:1–10

    Article  CAS  Google Scholar 

  • Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10:373–389

    Article  PubMed  CAS  Google Scholar 

  • Ul Ain Q, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205:120–127

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  PubMed  CAS  Google Scholar 

  • Vaitilingom M, Stupar M, Grienenberger JM, Gualberto JM (1998) A gene coding for an RPS2 protein is present in the mitochondrial genome of several cereals, but not in dicotyledons. Mol Gen Genet 258:530–537

    Article  PubMed  CAS  Google Scholar 

  • van Tol N, van der Zaal BJ (2014) Artificial transcription factor-mediated regulation of gene expression. Plant Sci 225:58–67

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Vilar M, Bernabe-Orts JM, Fernandez-Del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D (2016) A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waaijers S, Portegijs V, Kerver J, Lemmens BB, Tijsterman M, van den Heuvel S, Boxem M (2013) CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 195:1187–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, Li X, Tu J (2015) Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10:e0122755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  PubMed  CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15:308–321

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS ONE 8:e78982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan W, Smith C, Cheng L (2013) Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep 3:2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Sun Q, Li H (2015a) Advances in genetic modification technologies. Sheng Wu Gong Cheng Xue Bao 31:1162–1174

    PubMed  Google Scholar 

  • Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y (2015b) TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth Biol 4:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Mao Y, Ha S, Liu W, Botella JR, Zhu JK (2015c) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35:1519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Yang X, Yang C, Li M, Guo Y (2016a) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Sci Rep 6:20315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016b) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14:186–194

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Bao M, Wu F, Chen J, Deng X (2016) Predominance of single prophage carrying a CRISPR/cas system in “Candidatus Liberibacter asiaticus” strains in Southern China. PLoS ONE 11:e0146422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  PubMed  CAS  Google Scholar 

  • Zlotorynski E (2015) Plant cell biology: CRISPR–Cas protection from plant viruses. Nat Rev Mol Cell Biol 16:642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in molecular genetics and genomics who helped us during the preparation of this manuscript. We express our great thanks to Drs. M. Lauressergues, A. Omidbakhshfard, M. Page, W. Thompson, and D. Whitley for their critical reading and valuable comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Project funding: None.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Tang, A.Y. Genome engineering technologies for targeted genetic modification in plants. J. For. Res. 29, 875–887 (2018). https://doi.org/10.1007/s11676-017-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0588-z

Keywords

Navigation