Skip to main content
Log in

Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN)

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Genome editing tools (GET), including zinc-finger nucleases (ZFN), transcription activator-like endonucleases (TALENS), and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These genome editing tools mediate targeted genetic alterations by enhancing DNA mutation frequency via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, GETs can increase gene targeting and gene disruption via mutagenic DNA repair more than 10,000-fold. Recently, a novel class of genome editing tools was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN. Current results indicate that these tools can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on the use of ZFNs to modify the genome of farm animals, summarizes current knowledge on the underlying mechanism, and discusses new opportunities for generating genetically modified farm animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

DSB:

Double-strand break

EGFP:

Enhanced green fluorescent protein

FACS:

Fluorescence-activated cell sorting

GET:

Genome editing tools

HR:

Homologous recombination

HDR:

Homology-directed repair

IPS:

Induced pluripotent stem cells

NHEJ:

Nonhomologous end joining

SCNT:

Somatic cell nuclear transfer

SSB:

Single-strand break

TALEN:

Transcription activator-like effector endonuclease

ZF:

Zinc-finger

ZFN:

Zinc-finger nuclease

References

  • Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z (2014) Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci Chin Life sci 57(2):263–268. doi:10.1007/s11427-013-4601-2

    Article  CAS  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118. doi:10.1038/nature11537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755. doi:10.1038/nmeth.1653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15(4):1968–1973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper DK, Ayares D (2011) The immense potential of xenotransplantation in surgery. Int J Surg 9(2):122–129. doi:10.1016/j.ijsu.2010.11.002

    Article  PubMed  Google Scholar 

  • Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12(8):3365–3371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18(7):4070–4078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459–460

    Article  CAS  PubMed  Google Scholar 

  • Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ezzelarab M, Ayares D, Cooper DK (2005) Carbohydrates in xenotransplantation. Immunol Cell Biol 83(4):396–404. doi:10.1111/j.1440-1711.2005.01344.x

    Article  CAS  PubMed  Google Scholar 

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6(6):e21045. doi:10.1371/journal.pone.0021045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55(1):53–64. doi:10.1007/s13353-013-0182-9

    Article  PubMed  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi:10.1126/science.1172447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. doi:10.1038/nbt.2909

    PubMed Central  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108(29):12013–12017. doi:10.1073/pnas.1106422108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013a) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cellular and molecular life sciences : CMLS 70(16):2969–2983. doi:10.1007/s00018-012-1204-1

    Article  CAS  PubMed  Google Scholar 

  • Hauschild-Quintern J, Petersen B, Queisser AL, Lucas-Hahn A, Schwinzer R, Niemann H (2013b) Gender non-specific efficacy of ZFN mediated gene targeting in pigs. Transgenic Res 22(1):1–3. doi:10.1007/s11248-012-9647-6

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH (2013) Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci rep 3:1981. doi:10.1038/srep01981

    Article  PubMed Central  PubMed  Google Scholar 

  • Li P, Estrada JL, Burlak C, Tector AJ (2012) Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. Journal of surgical research, The. doi:10.1016/j.jss.2012.06.035

    Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci rep 3:2847. doi:10.1038/srep02847

    Article  PubMed  Google Scholar 

  • Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565. doi:10.1038/ncomms3565

    PubMed Central  PubMed  Google Scholar 

  • Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol sci / The Royal Society 281(1780):20133368. doi:10.1098/rspb.2013.3368

    Article  Google Scholar 

  • Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci U S A 72(1):358–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609–1614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104(9):3055–3060. doi:10.1073/pnas.0611478104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25(1):103–128. doi:10.1071/RD12265

    Article  PubMed  Google Scholar 

  • Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38(15):e152. doi:10.1093/nar/gkq512

    Article  PubMed Central  PubMed  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340. doi:10.1146/annurev.biochem.70.1.313

    Article  CAS  PubMed  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817

    Article  CAS  PubMed  Google Scholar 

  • Petersen B, Lucas-Hahn A, Oropeza M, Hornen N, Lemme E, Hassel P, Queisser AL, Niemann H (2008) Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10(3):355–362. doi:10.1089/clo.2008.0026

    Article  CAS  PubMed  Google Scholar 

  • Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32(2):91–105. doi:10.1016/j.cimid.2007.11.014

    Article  PubMed  Google Scholar 

  • Radding CM (1982) Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16:405–437. doi:10.1146/annurev.ge.16.120182.002201

    Article  CAS  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361–3369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793. doi:10.1038/nbt1317

    Article  CAS  PubMed  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576. doi:10.1038/nbt.2908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vasquez KM, Marburger K, Intody Z, Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98(15):8403–8410. doi:10.1073/pnas.111009698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22(7):1316–1326. doi:10.1101/gr.122879.111

    Article  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402(1):14–18

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M, Hayashida G, Asano Y, Takayanagi S, Arai Y, Umeyama K, Nagaya M, Hanazono Y, Nagashima H (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8(10):e76478. doi:10.1371/journal.pone.0076478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whyte JJ, Prather RS (2012) CELL BIOLOGY SYMPOSIUM: Zinc finger nucleases to create custom-designed modifications in the swine (Sus scrofa) genome. J Anim Sci 90(4):1111–U1159. doi:10.2527/jas. 2011-4546

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78(1):2. doi:10.1002/mrd.21271

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011a) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21(6):979–982. doi:10.1038/cr.2011.70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011b) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. doi:10.1038/cr.2011.70

    Google Scholar 

  • Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638–1640. doi:10.1038/cr.2011.153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Niemann.

Additional information

Responsible Editors: Natalay Kouprina and Vladimir Larionov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, B., Niemann, H. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res 23, 7–15 (2015). https://doi.org/10.1007/s10577-014-9451-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9451-7

Keywords

Navigation