Skip to main content
Log in

Micropropagation of Eucalyptus grandis  ×  E. urophylla AEC 224 clone

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Genetic transformation systems require protocols that allow regenerating transgenic plants from transformed tissues. This study aimed to establish a protocol for indirect organogenesis in leaf explants of a Eucalyptus grandis  ×  E. urophylla AEC 224 clone. During callogenesis stage, several concentrations of NAA and then NAA or 2,4-D combined with TDZ were tested in JADS culture medium for 30 days, followed by subculture of the explants in the regeneration medium, containing 5.0 µM BA and 0.5 µM NAA for another 30 days. In these media, the explant oxidation rate was high (95 %). Thus, in order to reduce oxidation, different culture media were compared: WPM, MS, JADS and modified QL, followed by explant transfer onto regeneration medium. The highest percentage of regeneration and the lowest oxidation rate were achieved on WPM medium. Then, NAA and 2,4-D were tested in combination with TDZ and also TDZ and BA combined with NAA in WPM medium. The most efficient culture media in terms of shoot regeneration were WPM supplemented with 0.25 µM TDZ and 0.1 µM NAA during 30 days for callus induction and then with 5.0 µM BA and 0.5 µM NAA for another 30 days. This protocol yielded a regeneration rate of 43 %, with a low oxidation of tissues. A rooting experiment was conducted using half strength MS medium and comparing three concentrations of IBA (2.46, 4.90 and 7.35 µM). The highest rooting percentage (35 %) was obtained on medium containing 2.46 µM IBA. Once the shoots were rooted, acclimatization in a greenhouse was not challenging and plant survival reached 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorphenoxyacetic acid

BA:

6-benzyladenine

IAA:

Indole-acetic acid

IBA:

Indole-3-butyric acid

JADS:

Culture medium of Correia et al. 1995

LD:

Culture medium of Lainé and David, 1994

MS:

Culture medium of Murashige and Skoog, 1962

NAA:

Naphthalene acetic acid

QLm:

Modified culture medium of Quoirin and Lepoivre, 1977

SIM:

Shoot Induction Medium

TDZ:

Thidiazuron

WPM:

Woody plant medium of Lloyd and McCown, 1980

References

  • Alves ECSC, Xavier A, Otoni WC (2004) Organogênese de explante foliar de clones de Eucalyptus grandis x E. urophylla. Pesquisa Agropecuária Brasileira 39:421–430

    Article  Google Scholar 

  • Andrade MW, Luz JMQ, Lacerda AS (2000) Micropropagação de aroeira (Myracrodruon urundeuva Fr. Allemao). Ciência e Agrotecnologia 24:174–180

    Google Scholar 

  • Azmi A, Dewitte W, Drevet C, Onckelen V, Landré P, Boudet AM, Jouanin L, Chriqui D (1997) Bud regeneration from Eucalyptus globulus clones and seedlings through hormonal imbalances induced by Agrobacterium tumefaciens strain 82.139. Plant Sci 127:81–90

    Article  CAS  Google Scholar 

  • Barrueto-Cid P, Machado A, Carvalheira SBRC, Brasileiro ACM (1999) Plant regeneration from seedling explants of Eucalyptus grandis & #x00D7; E. urophylla. Plant Cell Tissue Organ Cult 56:17–23

    Article  Google Scholar 

  • Bassan JS, Reiniger LRS, Rocha BHG, Severo CRP, Flôres AV (2006) Oxidação fenólica, tipo de explante e meios de cultura no estabelecimento in vitro de canafístula (Peltophorum dubium (Spreng.) Taub.). Ciência Florestal 16:381–390

    Article  Google Scholar 

  • Correia D, Gonçalves NA, Couto HTZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. Revista IPEF (Scientia Forestalis) 48(49):107–116

    Google Scholar 

  • Cuenca B, Ballester A, Vieitez AM (2000) In vitro adventitious bud regeneration from internode segments of beech. Plant Cell Tissue Organ Cult 60:213–220

    Article  CAS  Google Scholar 

  • Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Scientia Agricola 62:406–412

    Article  Google Scholar 

  • Dibax R, Deschamps C, Bespalhok Filho JC, Vieira LGE, Molinari HBC, De Campos MKF, Quoirin M (2010) Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol Plant 54:6–12

    Article  Google Scholar 

  • Gabriel MV. 2009. Otimização da multiplicação de brotações de Eucalyptus globulus Labill. in vitro. Master of Sciences Thesis, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA, Labate M, Labate C (1996) Plant hormones and plant growth regulator in plant tissue culture. In Vitro Cell Develop Biol—Plant 32:272–289

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (eds) (2008) Plant propagation by tissue culture, 3rd edn. Springer, The Netherlands, pp 104–204

    Google Scholar 

  • Gianfagna T (1995) Natural and synthetic growth regulators and their use in horticultural and agronomic crops. In: DAVIS J (ed) Plant hormones—physiology, biochemistry and molecular biology, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Glocke P, Delaporte K, Collins G, Sedgley M (2006) Micropropagation of juvenile tissue of Eucalyptus erythronema x Eucalyptus stricklandii cv. `Urrbrae Gem’. In Vitro Cell Develop Biol—Plant 42:139–143

    Article  CAS  Google Scholar 

  • González ER, Andrade A, Bertolo L, Lacerta G, Carneiro R, Defavari V, Labate M, Labate C (2002) Production of transgenic eucalyptus grandis & #x00D7; E. urophylla using sonication-assisted agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102

    Article  Google Scholar 

  • Hajari E, Watt MP, Mycock DJ, McAlister B (2006) Plant regeneration from induced callus of improved Eucalyptus clones. South Afri J Botany 72:195–201

    Article  Google Scholar 

  • Hervé P, Jauneau A, Pâques M, Marien JN, Boudet AM, Teulières C (2001) A procedure for shoot organogenesis in vitro from leaves and nodes of an elite Eucalyptus gunnii clone: comparative histology. Plant Sci 161:645–653

    Article  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T, Kitamura K (1997) Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max (L.) Merr.]. Plant Cell Rep 17:8–12

    Article  CAS  Google Scholar 

  • Karnovsky M (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kunieda MK, Kerbauy GB (1986) Formação de gemas em raízes adventícias de couve-flor cultivadas in vitro. Revista Brasileira de Botânica 9:231–238

    Google Scholar 

  • Lainé E, David A (1994) Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep 13:473–476

    Article  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Propagators’ Society 30:421–427

    Google Scholar 

  • Lu CY (1993) The use of thidiazuron in tissue culture. In Vitro Cell Develop Biol—Plant 29:92–96

    Article  Google Scholar 

  • Luque R, Sousa HC, Kraus JE (1996) Métodos de coloração de Roeser e Kropp visando a substituição do azul de astra por azul de alcião 8GS ou 8GX. Acta Botanica Brasilica 10:199–212

    Google Scholar 

  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Oliveira Y, Adamuchio LG, Oliveira C, Degenhardt-Goldbach J, Gerhardt I, Bespalhok Filho JC, Dibax R, Quoirin M. 2011. Indirect organogenesis from leaf explants of Eucalyptus benthamii x Eucalyptus dunnii and shoot multiplication. In: IUFRO Tree Biotechnology Conference, Arraial d’Ajuda, Bahia, Brazil

  • Oliveira LS, Xavier A, Dias PC, Correia ACG, Borges SR, Takahashi EK, Paiva HN (2012) Enraizamento de miniestacas e microestacas de clones de Eucalyptus urophylla & #x00D7; E. globulus e de Eucalyptus grandis & #x00D7; E. globulus. Scientia Forestalis 40:507–516

    Google Scholar 

  • Pasqual M, Hoffmann A, Ramos JD (1997) Cultura de tecidos vegetais: tecnologia e aplicação. UFLA, Lavras

    Google Scholar 

  • Preece FE, Compton MEI (1991) Problems with Explant Exudation in Micropropagation. In: Bajaj YPS (ed) High-tech and micropropagation I. biotechnology in agriculture and forestry, vol 17. Springer, Berlin, pp 168–189

    Google Scholar 

  • Quisen R, Lima YOU, Pileggi M, Cuquel F, Quoirin M (2009) Selective agent and A. tumefaciens overgrowth-control antibiotics in Eucalyptus camaldulensis cotiledonary culture. Brazil Arc Biol Technol 52:1485–1492

    Article  CAS  Google Scholar 

  • Quoirin M, Lepoivre P (1977) Étude de milieux adaptés aux cultures in vitro de Prunus sp. Acta Horticulturae 78:437–442

    Article  Google Scholar 

  • Reis CAF, Santos PET, Paludzyszyn Filho E (2014) Avaliação de clones de eucalipto em Ponta Porã, Mato Grosso do Sul. Pesquisa Florestal Brasileira 34:263–269

    Google Scholar 

  • Schuch MW, Peters JA (2002) Regeneração de brotações de macieira (Malus domestica, Borkh.) cv. Gala. Revista Brasileira de Fruticultura 24:301–305

    Article  Google Scholar 

  • Silva HR, Abreu HS, Deus DA (2013) Lignificação em calo de Eucalyptus grandis W. Hill ex Maiden Ciência Florestal 23:273–279

    Google Scholar 

  • Souza FVD, Faria GA, Silva Neto HP. 2006. Micropropagação. In: Introdução à micropropagação de plantas. Ed. Embrapa Mandioca e Fruticultura Tropical: 38-52

  • Studart-Guimarães C, Lacorte C, Brasileiro ACM (2003) Transformação genética em espécies florestais. Ciência Florestal 13:167–178

    Google Scholar 

  • Subbaiah MM, Minocha SC (1990) Shoot regeneration from stem and leaf callus of Eucalyptus tereticornis. Plant Cell Rep 9:370–373

    Article  CAS  PubMed  Google Scholar 

  • Xavier A, Wendling I, Silva RL (2009) Silvicultura clonal: princípios e técnicas. UFV, Viçosa

    Google Scholar 

Download references

Acknowledgments

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for PhD scholarship and Eileen Bagyary for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassiana de Oliveira.

Additional information

Project: This work was financially supported by CAPES and EmpresaBrasileira de PesquisaAgropecuária (Embrapa, Brazil).

The online version is available at http://www.springerlink.com

Corresponding editor: Hu Yanbo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C., Degenhardt-Goldbach, J., de França Bettencourt, G.M. et al. Micropropagation of Eucalyptus grandis  ×  E. urophylla AEC 224 clone. J. For. Res. 28, 29–39 (2017). https://doi.org/10.1007/s11676-016-0282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0282-6

Keywords

Navigation