Skip to main content
Log in

Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species

  • Research Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between ‘Monagha’ and ‘Sefied’ almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranzana MJ, García-Mas J, Carbo J, Arus P. 2002. Development and variability analysis of microsatellite markers in peach. Plant Breed, 121: 87–92.

    Article  CAS  Google Scholar 

  • Arulsekar S, Parfitt DE, Kester DE. 1986. Comparison of isozyme variability in peach and almond cultivars. J Hered, 77: 272–274.

    CAS  Google Scholar 

  • Barbosa AMM, Geraldi IO, Benchimol LL, Garcia AAF, Souza JRCL, Souza AP. 2003. Relationships of intra- and inter-population maize single crosses hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica, 130: 87–99.

    Article  CAS  Google Scholar 

  • Bartolozzi F, Warburton ML, Arulsekar S, Gradziel TM. 1998. Genetic characterization and relatedness among California almond cultivars and breeding line detected by randomly amplified polymorphic DNA (RAPD) analysis. J Am Soc Hort Sci, 123: 381–387.

    CAS  Google Scholar 

  • Barlett MS. 1937. Some examples of statistical methods of research in agriculture and applied biology. J R Stat Soc, 4: 137–170.

    Google Scholar 

  • Bassam BJ, Caetano-Anolles G. 1993. Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotech, 42: 181–188.

    Article  CAS  Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M. 1995. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet, 249: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I. 2003. Comparative study of discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet, 107: 736–744.

    Article  PubMed  CAS  Google Scholar 

  • Beyene Y, Botha A-M, Myburg AA. 2005. A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afric J Biot, 4(7): 586–595.

    Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK. 2002. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome, 45: 520–529.

    Article  PubMed  CAS  Google Scholar 

  • Browicz K, Zohary D. 1996. The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol, 43: 229–247.

    Article  Google Scholar 

  • Buteler MI, Jarret RL, LaBonte DR. 1999. Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet, 99: 123–132.

    Article  CAS  Google Scholar 

  • Cerezo M, Socias i company R, Vargas F. 1989. Identification of almond cultivars by pollen isoenzymes. J Am Soc Hort Sci, 114: 164–169.

    CAS  Google Scholar 

  • Channuntapipat C, Wirthensohn M, Ramesh SA, Batlle I, Arus P, Sedgley M, Collins G. 2003. Identification of incompatibility genotypes in almond (Prunus dulcis Mill.) using specific primers based on the introns of the S-alleles. Plant Breed, 122: 164–168.

    Article  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R. 1999 AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and amplification in Prunus. Theor Appl Genet, 100: 713–722.

    Google Scholar 

  • Clarke JB, Tobutt KR. 2003. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes, 3: 578–580.

    Article  CAS  Google Scholar 

  • Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297–302.

    Article  Google Scholar 

  • Dicenta F, García JE. 1992. Phenotypical correlations among some traits in almond. J Genet Breed, 46: 241–246.

    Google Scholar 

  • Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret L. 2002. Development of microsatelite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet, 105: 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Downey SL, Iezzoni AF. 2000 Polymorphic DNA markers in black cherry are identified using sequences from sweet cherry, peach and sour cherry. J Am Soc Hort Sci, 125: 76–80.

    CAS  Google Scholar 

  • Dos Santos JB, Nienhuis J, Skroch P, Tivang J, Slocum MK. 1994. Comparison of RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet, 87: 909–915.

    CAS  Google Scholar 

  • Excoffier L. 1992. Winamova ver 1.55-analysis of molecular variance-graphical windows 3.x program for the analysis of population structure from molecular or conventional genetic data. http://anthropologie.unige.ch/LGB/software/win/amova/

  • Excoffier L, Smouse P, Quattro J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Fuentes JL, Escobar F, Alvarez A, Gallego G, Duque MC, Ferrer M, Deus JE, Tohme JM. 1999. Analyses of genetic diversity in Cuban rice varieties using isozyme, RAPD and AFLP markers. Euphytica, 109: 107–115.

    Article  CAS  Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG. 2002. Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet, 105: 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  • Hahn V, Blankenhorn K, Schawall M, Melchinger AE. 1995 Relationships among early European maize inbreds: III. Genetic diversity revealed with RAPD markers and comparison with RFLP and pedigree data. Maydica, 40: 299–310.

    Google Scholar 

  • Hallden C, Nilsson NO, Rading IM, Sall T. 1994. Evaluation of RFLP and RAPD markers in comparison of Brassica napus breeding lines. Theor Appl Genet, 88: 123–128.

    Article  CAS  Google Scholar 

  • Hauagge R, Kester DE, Arulsekar S, Parfitt DE, Liu L. 1987. Isozyme variation among California almond cultivars. II. Cultivar characterization and origins. J Am Soc Hort Sci, 112: 693–698.

    CAS  Google Scholar 

  • Hormaza JI. 2002. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet, 104: 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed, 3: 381–390.

    Article  CAS  Google Scholar 

  • Kester DE, Gradziel TM. 1996. Almonds. In: Janick, J., Moore, J. N. (Eds) Fruit breeding, Almond. New York: Wiley, pp1–97.

    Google Scholar 

  • King G, Nienhuis J, Hussey C. 1993. Genetic similarity among ecotypes of Arabidopsis thaliana estimated by analysis of restriction fragment length polymorphisms. Theor Appl Genet, 86: 1028–1030.

    Google Scholar 

  • Ladizinsky G. 1999. On the origin of almond. Genet Res Crop Evol, 46: 143–147.

    Article  Google Scholar 

  • Lamboy WF, Yu J, Forsline PL, Weeden NF. 1996. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hort Sci, 121: 982–987.

    Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, Machado AD. 2002. Identification of microsatellite loci in apricot. Mol Ecol Notes, 2: 24–26.

    Article  CAS  Google Scholar 

  • Lynch M, Walsh JB. 1998. Genetic and Analysis of Quantitative Traits. Sinauer Assocs., Inc., Sunderland, MA.

    Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L. 2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica, 113: 135–144.

    Article  CAS  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R. 2004. New set of microsatellite loci isolated in apricot. Mol Ecol Notes, 4: 432–434.

    Article  CAS  Google Scholar 

  • Messmer MM, Melchinger AE, Boppenmaier J, Herrmann RG. 1993. Relationships among early European maize (Zea mays L.) inbred Lines: II. Comparison of pedigree and RFLP data. Crop Sci, 33: 944–950.

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res, 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM. 2003a. An extended inter-specific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica, 131: 313–322.

    Article  Google Scholar 

  • Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM. 2003b. Relationships among peach and almond and related species as detected by SSRs. J Am Sco Hort Sci, 128: 667–671.

    Google Scholar 

  • Martínez-Gómez P, Sánchez-Pérez R, Dicenta F, Howad W, Arus P, Gradziel TM. 2007. Almonds. In Genome Mapping and Molecular Breeding. Volume 4: Fruits & Nuts. Editor C.R. Kole. Springer. Heidelberg, Berlin, New York, Tokio. Pp 229–242.

    Chapter  Google Scholar 

  • Martins M, Tenreiro R, Oliveira M. 2003. Genetic relatedness of Portuguese almond collection assessed by RAPD and ISSR markers. Plant Cell Rep, 22: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P. 2004 Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina L.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes, 4: 163–165.

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Arus P. 2005. Development and transportability across Prunus species of 42 polymorphic almond microsatelites. Mol Ecol Notes, 5: 531–535.

    Article  CAS  Google Scholar 

  • Moradi H. 2005. Study of quantitative and qualitative characteristics of some almond cultivars in Shahrekord, IV International Symposium on Pistachios & Almonds. Tehran (IRAN), 22–25 May (2005)

  • Mir Ali N, Nabulsi I. 2003. Genetic diversity of almond (Prunus dulcis) using RAPD technique. ScientiaHort, 98: 461–471.

    CAS  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R. 1997. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed, 3: 127–136.

    Article  CAS  Google Scholar 

  • Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG. 2000. The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in situ hybridization of highly repeated DNA sequences. Chromosome Res, 8: 615–619.

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Rafalski A, Biddle P, Tingey S, Olivieri AM. 1994. Genetic mapping and variability of seven soybean sample sequence repeat loci. Genome, 37: 763–769.

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Gardiner SE, Basset CM, Stefanati M, Ball RD, Bus VGM, White AG. 2001. Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hort Sci, 126: 318–328.

    CAS  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplik V, Castiglioni P, Taramino G, Motto M. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet, 97: 1248–1255.

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey MM, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 2: 225–238.

    Article  CAS  Google Scholar 

  • Resta P, Corona M G, Fanizza G, Palasciano M, Godini A. 1998. Random amplified DNA polymorphism in Amygdalus communis L. and A. webbii Spach. Acta Hort, 470: 82–90.

    Google Scholar 

  • Rohlf FJ. 1998. NYSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.02 Exeter Software, Setauket, NY.

  • Roland-Ruiz I, Van Eeuwijk FA, Gilliland TJ, Dubreuil P, Dillmann C, Lallemand J, De Loose M. 2001. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet, 103: 1138–1150.

    Article  Google Scholar 

  • Sánchez-Pérez R, Ballester J, Dicenta F, Arús P, Martínez-Gómez P. 2006. Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: implications for the assessment of genetic diversity and relatedness in almond. ScientiaHort, 108: 310–316.

    Google Scholar 

  • Sanchez-Perez R, Ortega E, Duval H, Martinez-Gomez P, Dicenta F. 2007. Inheritance and relationships of important agronomic traits. Euphytica, 155: 381–391.

    Article  Google Scholar 

  • SAS Institute. 1999. SAS language guide for personal computers. Release 8.0 editions. SAS Inst., Cary NC, USA.

    Google Scholar 

  • Schueler S, Tusch A, Schuster M, Ziegenhagen B. 2003. Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) markers for individual identification and reproductive processes. Genome, 46: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Sherman WB. 1996. Peaches, In: J. Janick and Moore, J.N., (eds). Fruit breeding. New York: Wiley, 285–326.

    Google Scholar 

  • Shiran B, Ameirbakhtiar N, Kiani S, Mohamadi Sh, Tabatabaei BES, Moradi H. 2005. Molecular characterization and genetic relationships among almond cultivars assessed by RAPD and SSR markers. ScientiaHort, 111: 280–292.

    Google Scholar 

  • Sorkheh K. 2006. Application of molecular markers techniques in plant breeding. Scientific and Specific monthly in Agriculture, 171: 34–37.

    Google Scholar 

  • Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martínez-Gómez P, Asadi E. 2007a. Amplified Fragment Length Polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica, 156: 327–344.

    Article  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Aranzana MJ, Mohammadi SA, Martínez-Gómez P. 2007b. Application of amplified fragment length polymorphism (AFLPs) analysis to plant breeding and genetics: procedures, applications and prospects. J food Agr Env, 5(1): 197–204.

    CAS  Google Scholar 

  • Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Tarkesh-Esfahani S, Martínez-Gómez P (2008) Linkage Disequilibrium, Genetic Association Mapping and Gene Localization in Crop Plants. J Genet Mol Biol, 31(4): 805–814.

    Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P. 2009. Phenotypic diversity within native Iranian almond species and their breeding potential. Genet Resour Crop Evol, DOI in press.

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch.]. Theor Appl Genet, 101: 421–428.

    Article  CAS  Google Scholar 

  • Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, Katzir N. 2000. Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica, 115: 225–241.

    Article  CAS  Google Scholar 

  • Stewart CN, Excoffier L. 1996. Assessing population structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J Evol Biol, 9: 153–171.

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S. 2000. Microsatelite DNA in Peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43: 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Testolin R, Messina R, Lain O, Marrazzo MT, Huang WG, Cippiani G. 2004. Microsatellites isolated in almond from an AC repeat enriched library. Mol Ecol Notes, 4: 459–461.

    Article  CAS  Google Scholar 

  • Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC. 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet, 88: 973–980.

    Article  Google Scholar 

  • Tivang JG, Nienhuis J, Smith OS. 1994. Estimation of sampling variance of molecular marker data using the bootstrap procedure. Theor Appl Genet, 89: 259–264.

    Article  Google Scholar 

  • Vezvaei A. 2003. Isozyme diversity in Iranian almond. Acta Hort 622: 451–456.

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Peleman J, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG. 2002. High-throughput targeted SSR marker development in peach. Genome, 45: 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Williams JK, Kubelik AR, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Woolley FM, Collins GG, Sedgely M. 2000. Application of DNA fingerprinting for the classification of selected almond [Prunus dulcis (Miller) D. A. Webb] cultivars. Aust J Exp Agr, 40: 995–1001.

    Article  CAS  Google Scholar 

  • Wu K-s, Tanksely SD. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 241: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Sui Y, Chang FQ, Xu Y, Ma RC. 2006. SSR allelic variation in almond (Prunus dulcis Mill.). Theo and Appl Genet, 112: 366–372.

    Article  CAS  Google Scholar 

  • Xu Y, Ma RC, Xie H, Cao MQ. 2004. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome, 47: 1091–1104.

    Article  PubMed  CAS  Google Scholar 

  • Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martínez-Gómez P. 2008. Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Scienti Hort, 116: 80–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Sorkheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorkheh, K., Shiran, B., Kiani, S. et al. Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. Journal of Forestry Research 20, 183–194 (2009). https://doi.org/10.1007/s11676-009-0036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-009-0036-9

Keywords

Navigation