Skip to main content
Log in

Experimental Investigation of Phase Equilibria in the Cu-Co-Zr System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Through alloy sampling approach, phase equilibria in the Cu-Co-Zr ternary system have been determined. Based on the phases identified with electron probe microanalysis and x-ray diffraction, isothermal sections at both 873 and 1200 K were constructed. No ternary compound was detected. It is evident that remarkable ternary solubility occurs in almost all binary intermetallic phases at both temperatures. For instance, solubility of Co in Cu51Zr14 can be up to 17.6 and 27.5 at.% at 873 and 1200 K, respectively. Besides, continuous dissolution between CuZr and CoZr at 1200 K was observed, and the maximum content of Cu in CoZr at 873 K reaches to 42.5 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Inoue and A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys, Acta Mater., 2011, 59, p 2243-2267

    Article  Google Scholar 

  2. Q. Zhang, W. Zhang, and A. Inoue, New Cu-Zr-Based Bulk Metallic Glasses with Large Diameters of Up to 1.5 cm, Scripta Mater., 2006, 55, p 711-713

    Article  Google Scholar 

  3. A. Zhang, D. Chen, and Z. Chen, Bulk Metallic Glass-Forming Region of Cu-Zr Binary and Cu-Zr Based Multicomponent Alloy Systems, J. Alloys Compd., 2009, 477, p 432-435

    Article  Google Scholar 

  4. J. Eckert, J. Das, S. Pauly, and C. Duhamel, Mechanical Properties of Bulk Metallic Glasses and Composites, J. Mater. Res., 2007, 22, p 285-301

    Article  ADS  Google Scholar 

  5. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys, Acta Mater., 2007, 55, p 4067-4109

    Article  Google Scholar 

  6. Y. Wu, Y. Xiao, G. Chen, C.T. Liu, and Z. Lu, Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility, Adv. Mater., 2010, 22, p 2770-2773

    Article  Google Scholar 

  7. Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, and G.L. Chen, Formation of Cu-Zr-Al Bulk Metallic Glass Composites with Improved Tensile Properties, Acta Mater., 2011, 59, p 2928-2936

    Article  Google Scholar 

  8. F.F. Wu, K.C. Chan, S.T. Li, and G. Wang, Stabilized Shear Banding of ZrCu-Based Metallic Glass Composites Under Tensile Loading, J. Mater. Sci., 2014, 49, p 2164-2170

    Article  ADS  Google Scholar 

  9. S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, and D.H. Kim, Deformation-Induced Martensitic Transformation in Cu-Zr-(Al, Ti) Bulk Metallic Glass Composites, Scripta Mater., 2009, 60, p 431-434

    Article  Google Scholar 

  10. D. Arias and J.P. Abriata, Cu-Zr (Copper-Zirconium), Bull. Alloy Phase Diagr, 1990, 11, p 452-459

    Article  Google Scholar 

  11. F.A. Javid, N. Mattern, S. Pauly, and J. Eckert, Martensitic Transformation and Thermal Cycling Effect in Cu-Co-Zr Alloys, J. Alloys Compd., 2011, 509(Supplement 1), p S334-S337

    Article  Google Scholar 

  12. F.A. Javid, N. Mattern, M. Samadi Khoshkhoo, M. Stoica, S. Pauly, and J. Eckert, Phase Formation of Cu50−xCoxZr50 (x = 0 − 20 at.%) Alloys: Influence of Cooling Rate, J. Alloys Compd., 2014, 590, p 428-434

    Article  Google Scholar 

  13. S. Pauly, K. Kosiba, P. Gargarella, B. Escher, K.K. Song, and G. Wang, Microstructural Evolution and Mechanical Behaviour of Metastable Cu-Zr-Co Alloys, J. Mater. Sci. Technol., 2014, 30, p 584-589

    Article  Google Scholar 

  14. W.H. Gao, X.L. Meng, W. Cai, and L.C. Zhao, Effects of Co and Al Addition on Martensitic Transformation and Microstructure in ZrCu-Based Shape Memory Alloys, Trans. Nonferr. Met. Soc. China, 2015, 25, p 850-855

    Article  Google Scholar 

  15. J. Kubista and J. Vrestal, Thermodynamics of the Liquid Co-Cu System and Calculation of Phase Diagram, J. Phase Equilibria, 2000, 21, p 125-129

    Article  Google Scholar 

  16. W.H. Pechin, D.E. Williams, and W.L. Larsen, The Zirconium-Cobalt Alloy System, Trans. ASM, 1964, 57, p 464-473

    Google Scholar 

  17. C.K. Bataleva, V.V. Kuprina, V.V. Burnasheva, V.Y. Markiv, G.N. Ronami, and S.M. Kuznetsova, Phase Diagram of the Cobalt-Zirconium System, Vest. Mosk. Univ. Khim, 1970, 11(5), p 557-561

    Google Scholar 

  18. T. Chart and F. Putland, A Thermodynamically Calculated Phase Diagram for the Co-Cr-Zr System, Calphad, 1979, 3(1), p 9-18

    Article  Google Scholar 

  19. X.J. Liu, H.H. Zhang, C.P. Wang, and K. Ishida, Experimental Determination and Thermodynamic Assessment of the Phase Diagram in the Co-Zr System, J. Alloys Compd., 2009, 482(1–2), p 99-105

    Article  Google Scholar 

  20. P. Villars, Material phases data system (MPDS), CH-6354 Vitznau, Switzerland (ed.) Springer Materials Co-Zr Binary Phase Diagram 0–100 at.% Zr (2014), http://materials.springer.com/isp/phase-diagram/docs/c_0905367. Accessed 15 Mar 2016

  21. E. Kneller, Y. Khan, and U. Gorres, The Alloy System Copper-Zirconium, I. Phase Diagram and Structural Relations, Z. MetaIlkd, 1986, 77, p 43-48

    Google Scholar 

  22. D. Arias and J.P. Abriata, Cu-Zr (Copper-Zirconium), Bull. Alloy Phase Diagr., 1990, 11, p 452-459

    Article  Google Scholar 

  23. K.J. Zeng, M. Hämäläinen, and H.L. Lukas, A New Thermodynamic Description of the Cu-Zr System, J. Phase Equilib., 1994, 15, p 577-586

    Article  Google Scholar 

  24. N. Wang, C. Li, Z. Du, F. Wang, and W. Zhang, The Thermodynamic Re-assessment of the Cu-Zr System, Calphad, 2006, 30, p 461-469

    Article  Google Scholar 

  25. G. Ghosh, First-Principles Calculations of Structural Energetics of Cu-TM (TM = Ti, Zr, Hf) Intermetallics, Acta Mater., 2007, 55, p 3347-3374

    Article  Google Scholar 

  26. K. Yamaguchi, Y.C. Song, T. Yoshida, and K. Itagaki, Thermodynamic Investigation of the Cu-Zr System, J. Alloys Compd., 2008, 452, p 73-79

    Article  Google Scholar 

  27. S.H. Zhou and R.E. Napolitano, Phase Stability for the Cu-Zr System: First-Principles, Experiments and Solution-Based Modeling, Acta Mater., 2010, 58, p 2186-2196

    Article  Google Scholar 

  28. W. Gierlotka, K.C. Zhang, and Y.P. Chang, Thermodynamic Description of the Binary Cu-Zr System, J. Alloys Compd., 2011, 509, p 8313-8318

    Article  Google Scholar 

  29. T. Wang, T.E. Cullinan, and R.E. Napolitano, A New Method for Measuring the Thermodynamic Properties of Undercooled Liquid and Amorphous Cu-Zr Alloys, Acta Mater., 2014, 62, p 188-196

    Article  Google Scholar 

  30. J. Du, B. Wen, R. Melnik, and Y. Kawazoe, Phase Stability, Elastic and Electronic Properties of Cu-Zr Binary System Intermetallic Compounds: A First-Principles Study, J. Alloys Compd., 2014, 588, p 96-102

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51171210), the National Key Research and Development Program of China (Grant No. 2016YFB0701404) and the Major State Basic Research Development Program of China (Grant No. 2014CB6644002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, K.L., Xie, Z.Y., Liu, H.S. et al. Experimental Investigation of Phase Equilibria in the Cu-Co-Zr System. J. Phase Equilib. Diffus. 38, 855–864 (2017). https://doi.org/10.1007/s11669-017-0591-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0591-2

Keywords

Navigation