Skip to main content
Log in

Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile plastic deformation behavior of ZrCu-based metallic glass composites with various crystalline volume fractions was investigated. A tensile plastic strain of more than 10 % was achieved in a metallic glass composite with a crystalline volume fraction of 32.6 %. It was found that the B2 phase can effectively activate the formation of multiple shear bands, which significantly stabilize the tensile plastic deformation of metallic glass composites. A critical volume fraction for stable tensile plastic deformation was determined. In addition to the volume fraction, the density of the stress concentration sites and the distribution of the B2 phase were also found to be key factors controlling the stable plastic deformation of ZrCu-based BMG composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pampillo CA (1975) Review: flow and fracture in amorphous alloys. J Mater Sci 10:1194–1227. doi:10.1007/BF00541403

    Article  Google Scholar 

  2. Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109

    Article  Google Scholar 

  3. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89

    Article  Google Scholar 

  4. Zhang ZF, Wu FF, He G, Eckert J (2007) Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials. J Mater Sci Technol 23:747–767

    Google Scholar 

  5. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724

    Article  Google Scholar 

  6. Ashby MF, Greer AL (2006) Metallic glasses as structural materials. Scripta Mater 54:321–326

    Article  Google Scholar 

  7. Greer AL, Cheng YQ, Ma E (2013) Shear bands in metallic glasses. Mater Sci Eng R 74:71–132

    Article  Google Scholar 

  8. Greer AL (2011) Metallic glasses damage tolerance at a price. Nature Mater 10:88–90

    Article  Google Scholar 

  9. Chen H, He Y, Shiflet GJ, Poon SJ (1994) Deformation-induced nanocrystal formation in shear bands of amorphous-alloys. Nature 367:541–543

    Article  Google Scholar 

  10. Hajlaoui K, Yavari AR, Doisneau B, LeMoulec A, Botta WJF, Vaughan G, Greer AL, Inoue A, Zhang W, Kvick A (2006) Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Mater 54:1829–1834

    Article  Google Scholar 

  11. Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103:083539

    Article  Google Scholar 

  12. Schuster BE, Wei Q, Ervin MH, Hruszkewycz SO, Miller MK, Hufnagel TC, Ramesh KT (2007) Bulk and microscale compressive properties of a Pd-based metallic glass. Scripta Mater 57:517–520

    Article  Google Scholar 

  13. Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Tensile ductility and necking of metallic glass. Nature Mater 6:735–739

    Article  Google Scholar 

  14. Jang D, Greer JR (2010) Transition from a strong-yet-brittle to stronger-yet-ductile state by size reduction of metallic glass. Nature Mater 9:215–219

    Google Scholar 

  15. Wu FF, Zheng W, Wu SD, Zhang ZF, Shen J (2011) Shear stability of metallic glasses. Int J Plast 27:560–575

    Article  Google Scholar 

  16. Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A (2000) High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZRC particles. Scripta Mater 43:503–507

    Article  Google Scholar 

  17. Inoue A, Zhang W, Tsurui T, Yavari AR, Greer AL (2005) Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper–zirconium glass. Philos Mag Lett 85:221–229

    Article  Google Scholar 

  18. Fan C, Louzguine DV, Li CF, Inoue A (1999) Nanocrystalline composites with high strength obtained in Zr–Ti–Ni–Cu–Al bulk amorphous alloys. Appl Phys Lett 75:340–342

    Article  Google Scholar 

  19. Louzguine DV, Kato H, Inoue A (2004) High-strength Cu-based crystal-glassy composite with enhanced ductility. Appl Phys Lett 84:1088–1089

    Article  Google Scholar 

  20. Hays CC, Kim CP, Johnson WL (2000) Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys Rev Lett 84:2901–2904

    Article  Google Scholar 

  21. Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, Johnson WL (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451:1085–1090

    Article  Google Scholar 

  22. Hofmann DC, Suh JY, Wiest A, Lind ML, Demetriou MD, Johnson WL (2008) Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. PNAS 105:20136

    Article  Google Scholar 

  23. Wu FF, Zhang ZF, Peker A, Mao SX, Das J, Eckert J (2006) Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. J Mater Res 21:2331–2336

    Article  Google Scholar 

  24. Wu FF, Zhang ZF, Peker A, Mao SX, Eckert J (2007) Effect of annealing temperature on the mechanical properties and fracture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 bulk metallic glass composite. Phys Rev B 75:134201

    Article  Google Scholar 

  25. Oh YS, Kim CP, Lee S, Kim NJ (2011) Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Mater 59:7277–7286

    Article  Google Scholar 

  26. Kim CP, Oh YS, Lee S, Kim NJ (2011) Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation. Scripta Mater 65:304–307

    Article  Google Scholar 

  27. Wu Y, Zhou DQ, Song WL, Wang H, Zhang ZY, Ma D, Wang XL, Lu ZP (2012) Ductilizing bulk metallic glass composite by tailoring stacking fault energy. Phys Rev Lett 109:245506

    Article  Google Scholar 

  28. Wu Y, Xiao XH, Chen GL, Liu CT, Lu ZP (2010) Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv Mater 22:2770–2773

    Article  Google Scholar 

  29. Song KK, Pauly S, Zhang Y, Li R, Gorantla S, Narayanan N, Kühn U, Gemming T, Eckert J (2012) Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Mater 60:6000–6012

    Article  Google Scholar 

  30. Pauly S, Liu G, Wang G, Kühn U, Matterna N, Eckert J (2009) Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater 57:5445–5453

    Article  Google Scholar 

  31. Liu ZQ, Li R, Liu G, Su WH, Wang H, Li Y, Shi MJ, Luo XK, Wu GJ, Zhang T (2012) Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater 60:3128–3139

    Article  Google Scholar 

  32. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  Google Scholar 

  33. Seo JW, Schryvers D (1998) TEM investigation of the microstructure and defects of CuZr martensite. Part I: morphology and twin systems. Acta Mater 46:1165–1175

    Article  Google Scholar 

  34. Donohue A, Spaepen F, Hoagland RG, Misra A (2007) Suppression of the shear band instability during plastic flow of nanometerscale confined metallic glasses. Appl Phys Lett 91:241905

    Article  Google Scholar 

  35. Wang YM, Li J, Hamza AV, Barbee TW (2007) Ductile crystalline–amorphous nanolaminates. PNAS 104:11155–11160

    Article  Google Scholar 

  36. Sun BA, Yu HB, Jiao W, Bai HY, Zhao DQ, Wang WH (2010) Plasticity of ductile metallic glasses: a self-organized critical state. Phys Rev Lett 105:035501

    Article  Google Scholar 

  37. Wang G, Chan KC, Xia L, Yu P, Shen J, Wang WH (2009) Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater 57:6146–6155

    Article  Google Scholar 

  38. Wu FF, Zhang ZF, Mao SX (2009) Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater 57:257–266

    Article  Google Scholar 

  39. Wu FF, Zhang ZF, Mao SX (2009) Effect of sample size on ductility of metallic glass. Philos Mag Lett 89:178–184

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 511211), the National Natural Science Foundation of China (NSFC) under Grant Nos. 50901038 and 50931005, and the Education Department of Liaoning Province of China under Grant No. 2009S053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, FF., Chan, K.C., Li, ST. et al. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading. J Mater Sci 49, 2164–2170 (2014). https://doi.org/10.1007/s10853-013-7909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7909-1

Keywords

Navigation