Skip to main content
Log in

Experimental investigation of phase equilibria in the Cu–Ni–Zr system

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase equilibria in the Cu–Ni–Zr ternary system have been measured through alloy sampling combined with diffusion couple approach. According to the phase relations identified with electron probe microanalysis and X-ray diffraction techniques, isothermal sections at both 1073 and 1293 K were constructed. It is evident that remarkable ternary solubility occurs in almost all binary intermetallic phases at both temperatures. The formerly reported ternary compounds T1 (Cu20–40Ni40–60Zr20) and T2 (Cu20–25Ni60–65Zr15) were not verified in this work. No other ternary compound was detected. In addition, continuous dissolution between Cu10Zr7 and Ni10Zr7 at 1073 K was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59:2243–2267

    Article  Google Scholar 

  2. Zhang Q, Zhang W, Inoue A (2006) New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5cm. Scr Mater 55:711–713

    Article  Google Scholar 

  3. Zhang A, Chen D, Chen Z (2009) Bulk metallic glass-forming region of Cu–Zr binary and Cu–Zr based multicomponent alloy systems. J. Alloys Compd 477:432–435

    Article  Google Scholar 

  4. Qu DD, Liss KD, Sun YJ, Reid M, Almer JD, Yan K, Wang YB, Liao XZ, Shen J (2013) Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass. Acta Mater 61:321–330

    Article  Google Scholar 

  5. Gargarella P, Pauly S, Samadi Khoshkhoo M, Kühn U, Eckert J (2014) Phase formation and mechanical properties of Ti–Cu–Ni–Zr bulk metallic glass composites. Acta Mater 65:259–269

    Article  Google Scholar 

  6. Qiu F, Shen P, Liu C, Jiang Q (2012) Effects of Ni addition on the microstructure and compressive deformation behavior in Zr–Cu–Ni martensitic alloys. Mater Des 34:143–147

    Article  Google Scholar 

  7. Mey S (1992) Thermodynamic re-evaluation of the Cu-Ni system. Calphad 16:255–260

    Article  Google Scholar 

  8. Nash P, Jayanth CS (1984) The Ni-Zr (Nickel-Zirconium) system. Bull. Alloy Phase Diagr 5:144–148

    Article  Google Scholar 

  9. Ghosh G (1994) Thermodynamics and kinetics of stable and metastable phases in the Ni–Zr system. J Mater Res 3:598–616

    Article  Google Scholar 

  10. Zaitsev AI, Zaitseva NE, Shakhpazov EK, Kodentsov AA (2002) Thermodynamic properties and phase equilibria in the nickel-zirconium system, the liquid to amorphous state transition. Phys Chem Chem Phys 4:6047–6058

    Article  Google Scholar 

  11. Abe T, Onodera H, Shimono M, Ode M (2005) Thermodynamic modeling of the undercooled liquid in the Ni-Zr system. Mater Trans 46:2838–2843

    Article  Google Scholar 

  12. Wang N, Li C, Du Z, Wang F (2007) Experimental study and thermodynamic re-assessment of the Ni–Zr system. Calphad 31:413–421

    Article  Google Scholar 

  13. Okamoto H (2007) Ni-Zr (Nickel-Zirconium). J Phase Equilib 4:409

    Article  Google Scholar 

  14. Kosorukova T, Ivanchenko V, Firstov G, Noe H (2013) Experimental reinvestigation of the Ni-Zr system. Solid State Phenom 194:14–20

    Article  Google Scholar 

  15. Du J, Wen B, Melnik R, Kawazoe Y (2014) First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni–Zr intermetallic compounds. Intermetallics 54:110–119

    Article  Google Scholar 

  16. Kneller E, Khan Y, Gorres U (1986) The alloy system copper-zirconium, I. Phase diagram and structural relations. Z. MetaIlkd 77:43–48

    Google Scholar 

  17. Arias D, Abriata JP (1990) Cu-Zr (Copper-Zirconium). Bull. Alloy Phase Diagr 11:452–459

    Article  Google Scholar 

  18. Yamaguchi K, Song YC, Yoshida T, Itagaki K (2008) Thermodynamic investigation of the Cu–Zr system. J Alloys Compd 452:73–79

    Article  Google Scholar 

  19. Zeng KJ, Hämäläinen M, Lukas HL (1994) A new thermodynamic description of the Cu-Zr system. J Phase Equilib 15:577–586

    Article  Google Scholar 

  20. Wang N, Li C, Du Z, Wang F, Zhang W (2006) The thermodynamic re-assessment of the Cu–Zr system. Calphad 30:461–469

    Article  Google Scholar 

  21. Gierlotka W, Zhang KC, Chang YP (2011) Thermodynamic description of the binary Cu–Zr system. J Alloys Compd 509:8313–8318

    Article  Google Scholar 

  22. Zhou SH, Napolitano RE (2010) Phase stability for the Cu–Zr system: first-principles, experiments and solution-based modeling. Acta Mater 58:2186–2196

    Article  Google Scholar 

  23. Du J, Wen B, Melnik R, Kawazoe Y (2014) Phase stability, elastic and electronic properties of Cu–Zr binary system intermetallic compounds: a first-principles study. J. Alloys Compd 588:96–102

    Article  Google Scholar 

  24. Fedorov VN, Zakharov MV, Kucherov VI, Ivanova GS (1968) The Cu corner of the Cu-Ni-Zr phase diagram (in Russian). Izv. Vyss. Uchebn. Zaved Tsvetn. Metall 5:74–77

    Google Scholar 

  25. Takeuchi Y, Watanabe M, Yamabe S, Wada T (1968) Eutectic titanium- and zirconium solders (in German). Metall 22:8–15

    Google Scholar 

  26. Vyal NV, Ivanov OS (1968) The Zr corner of the Zr-Cu-Ni phase diagram (in Russian). Fiz. Khim. Splavov Tsirkoniya, pp 151–158

  27. Ghosh G (2007) Cu-Ni-Zr (copper-nickel-zirconium). In: Effenberg G, Ilyenko S (eds) Non-ferrous metal systems Part 2. Springer–Verlag, Berlin, pp 382–395

  28. Liu CH, Chiang WR, Hsieh KC, Austin Chang Y (2006) Phase equilibrium in the Cu–Ni–Zr system at 800 °C. Intermetallics 14:011–1013

    Google Scholar 

  29. Kalmykov KB, Zvereva NL, Dmitrieva NE, Dunaev SF, Kondratyev DM (2011) Investigation of the phase diagram and the determination of synthesis conditions of volume amorphous alloys in the Cu-Ni-Zr system at 1123 K. Moscow Univ Chem Bull 66:47–252

    Article  Google Scholar 

  30. Wang YM, Liu HS, Zhang LG, Zheng F, Jin ZP (2006) The isothermal section of the Co–Cu–Ti ternary system at 1023 K by using diffusion triple technique. Mater Sci Eng A 431:84–190

    Google Scholar 

  31. Jin ZP (1981) A study of the range of stability of σ phase in some ternary systems. Scand J Metall 10:79–287

    Google Scholar 

  32. Kodentsov AA, Bastin GF, van Loo FJJ (2001) The diffusion couple technique in phase diagram determination. J. Alloys Compd 320:07–217

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 51171210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. L. Lv or H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, K.L., Xie, Z.Y., Liu, H.S. et al. Experimental investigation of phase equilibria in the Cu–Ni–Zr system. J Mater Sci 50, 7238–7247 (2015). https://doi.org/10.1007/s10853-015-9278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9278-4

Keywords

Navigation