Skip to main content

Advertisement

Log in

Thermodynamic Modeling and Experimental Verification of Eutectic Point in the LiNO3-NaNO3-Ca(NO3)2 Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase diagram of the LiNO3-NaNO3-Ca(NO3)2 ternary system was predicted by using an asymmetric Toop model. The thermogravimetry and Differential Scanning Calorimeter experiments of the predicted eutectic composition were also carried out. The eutectic temperature and composition reported in various literatures are evaluated based on the results determined in this work. The results show that the eutectic temperature and composition reported by Storonkin et al. (Vopr Termodin Geterogen Sist i, 2:128-139, 1973) is more reliable than reported by other literatures. It is indict that wider working temperature window (lower condensation point) in solar thermal power plant can be obtained when the thermal energy storage medium of the titled system is prepared with the eutectic composition determined in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.G. Reddy, Molten Salts: Thermal Energy Storage and Heat Transfer Media, J. Phase Equilib. Diffus., 2011, 32(4), p 269-270

    Article  Google Scholar 

  2. Y. Tian and C.Y. Zhao, A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications, Appl. Energy, 2013, 104, p 538-553

    Article  Google Scholar 

  3. K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim, and H. Fayaz, A Review on Global Solar Energy Policy, Renew. Sust. Energy Rev., 2011, 15(4), p 2149-2163

    Article  Google Scholar 

  4. X.L. Wei, Q. Qeng, J. Ding, X.X. Yang, J.P. Yang, and B. Long, Theoretical Study on Thermal Stability of Molten Salt for Solar Thermal Power, Appl. Therm. Eng., 2013, 54(1), p 140-144

    Article  Google Scholar 

  5. Q. Qeng, X.X. Yang, J. Ding, X.L. Wei, and J.P. Yang, Design of New Molten Salt Thermal Energy Storage Materials for Solar Thermal Power Plant, Appl. Energy, 2013, 112, p 682-689

    Article  Google Scholar 

  6. C.Y. Zhao and Z.G. Wu, Thermal Property Characterization of a Low Melting-Temperature Ternary Nitrate Salt Mixture for Thermal Energy Storage Systems, Sol. Energy Mater. Sol. Cells, 2011, 95, p 3341-3346

    Article  Google Scholar 

  7. Y.T. Wu, N. Ren, T. Wang, and C.F. Ma, Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant, Sol. Energy, 2011, 85(9), p 1957-1966

    Article  ADS  Google Scholar 

  8. J.C. Gomez, N. Calvet, A.K. Starace, and G.C. Glatzmaier, Ca(NO3)2-NaNO3-KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants, J. Sol. Energy Eng., 2013, 135, p 021016-1-021016-8

    Article  Google Scholar 

  9. D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, and N. Potrovitza, Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field, Energy, 2004, 29(5-6), p 861-870

    Article  Google Scholar 

  10. D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, and H. Price, Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field, J. Sol. Energy Eng., 2003, 125(2), p 170-176

    Article  Google Scholar 

  11. R.G. Reddy, T. Wang, and D. Mantha, Thermodynamic Properties of Potassium Nitrate-Magnesium Nitrate Compound [2KNO3·Mg(NO3)2], Thermochim. Acta, 2012, 531, p 6-11

    Article  Google Scholar 

  12. R.I. Olivares and W. Edwards, LiNO3-NaNO3-KNO3 Salt for Thermal Energy Storage: Thermal Stability Evaluation in Different Atmospheres, Thermochim. Acta, 2013, 560, p 34-42

    Article  Google Scholar 

  13. D. Mantha, T. Wang, and R.G. Reddy, Thermodynamic Modeling of Eutectic Point in the LiNO3-NaNO3-KNO3 Ternary System, J. Phase Equilib. Diffus., 2012, 33(2), p 110-114

    Article  Google Scholar 

  14. T. Wang, D. Mantha, and R.G. Reddy, Novel Low Melting Point Quaternary Eutectic System for Solar Thermal Energy Storage, Appl. Energy, 2013, 102, p 1422-1429

    Article  Google Scholar 

  15. T. Wang, D. Mantha, and R.G. Reddy. High Thermal Energy Storage Density LiNO3-NaNO3-KNO3-KNO2 Quaternary Molten Salt for Parabolic Trough Solar Power Generation, Energy Technol., 2012, p 73-84

  16. A.G. Fernández, S. Ushak, H. Galleguillos, and F.J. Pérez, Thermal Characterisation of an Innovative Quaternary Molten Nitrate Mixture for Energy Storage in CSP Plants, Sol. Energy Mater. Sol. Cells, 2015, 132, p 172-177

    Article  Google Scholar 

  17. H.R. Carveth, Study of a Three-Component System, J. Phys. Chem., 1898, 2(4), p 209-228

    Article  Google Scholar 

  18. R.W. Bradshaw and D.E. Meeker, High-Temperature Stability of Ternary Nitrate Molten Salts for Solar Thermal Energy Systems, Sol. Energy Mater., 1990, 21(1), p 51-60

    Article  Google Scholar 

  19. F. Roget, C. Favotto, and J. Rogez, Study of the KNO3-LiNO3 and KNO3-NaNO3-LiNO3 Eutectics as Phase Change Materials for Thermal Storage in a Low-Temperature Solar Power Plant, Sol. Energy, 2013, 95, p 155-169

    Article  ADS  Google Scholar 

  20. A. Lehrman, E. Adler, J. Freidus, and M. Neimand, The Liquidus Curve and Surface of the Systems Lithium and Calcium Nitrates and Calcium, Lithium and Potassium Nitrates, J. Am. Chem. Soc., 1937, 59(1), p 179-181

    Article  Google Scholar 

  21. C.Y. Zhao and Z.G. Wu, Thermal Property Characterization of a Low Melting-Temperature Ternary Nitrate Salt Mixture for Thermal Energy Storage Systems, Sol. Energy Mater. Sol. Cells, 2011, 95, p 3341-3346

    Article  Google Scholar 

  22. A.G. Fernandez, S. Ushak, H. Galleguillos, and F.J. Perez, Development of New Molten Salts with LiNO3 and Ca(NO3)2 for Energy Storage in CSP Plants, Appl. Energy, 2014, 119, p 131-140

    Article  Google Scholar 

  23. J.T. Wang, M.Z. Lai, H.J. Han, Z.Y. Ding, S.J. Liu, and D.W. Zeng, Thermodynamic Modeling and Experimental Verification of Eutectic Point in the LiNO3-KNO3-Ca(NO3)2 Ternary System, J. Therm. Anal. Calorim., 2015, 119(2), p 1259-1266

    Article  Google Scholar 

  24. E. Janecke, The Quaternary System Na, K, Ca, Mg//NO3 and its Subsystems, Z. Elektrochem. Angew. Phys. Chem., 1942, 48(9), p 453-467, in German

    Google Scholar 

  25. P.I. Protsenko and A.G. Bergman, Ternary System of Fused Nitrates of Calcium, Potassium, and Sodium, Russ. J. Inorg. Chem., 1950, 20, p 1365-1375, in Russian

    Google Scholar 

  26. Georig & CO GmbH & Co KG. Use of a Ternary Mixture of Salts as a Heat Transmitting Medium and/or as a Heat Storage Medium, Germnan: DE3038844, 1982-04-29 in German

  27. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, and L.F. Cabeza, State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization, Renew. Sustain. Energy Rev., 2010, 14(1), p 31-55

    Article  Google Scholar 

  28. A. Lehrman and D. Breslow, The Liquidus Surface of the System Sodium, Lithium and Calcium Nitrates, J. Am. Chem. Soc., 1938, 60(4), p 873-876

    Article  Google Scholar 

  29. A.V. Storonkin, I.V. Vasilkova, and V.I. Shamko, Phase Diagram for the Sodium, Calcium, Lithium DVR Nitrate System, Vopr. Termodin. Geterogen. Sist. i, 1973, 2, p 128-139 (in Russian)

    Google Scholar 

  30. Z.Y. Qiao, X.L. Xing, and M. Peng, Thermodynamic Criterion for Judging the Symmetry of Ternary Systems and Criterion Applications, J. Phase Equilib. Diffus., 1996, 17(6), p 502-507

    Article  Google Scholar 

  31. D. Mantha, T. Wang, and R.G. Reddy, Thermodynamic Modeling of Eutectic Point in the LiNO3-NaNO3-KNO3-NaNO2 Quaternary System, Sol. Energy Mater. Sol. Cells, 2013, 118, p 18-21

    Article  Google Scholar 

  32. T. Wang, D. Mantha, and R.G. Reddy, Thermodynamic Properties of LiNO3-NaNO3-KNO3-2KNO3∙Mg(NO3)2 System, Thermochim. Acta, 2013, 551, p 92-98

    Article  Google Scholar 

  33. Q. Peng, X.X. Yang, J. Ding, X.L. Wei, and J.P. Yang, Thermodynamic Performance of the NaNO3-NaCl-NaNO2 Ternary System, J. Therm. Anal. Calorim., 2014, 115(2), p 1753-1758

    Article  Google Scholar 

  34. G.W. Toop, Predicting Ternary Activities Using Binary Data, Trans. AIME., 1965, 233, p 850-855

    Google Scholar 

  35. I. Ansara, C. Bemard, L. Kaufman, and P. Spencer, A Comparison of Calculated Phase Equilibriums in Selected Ternary Alloy Systems Using Thermodynamic Values Derived from Different Models, CALPHAD, 1978, 2(1), p 1-15

    Article  Google Scholar 

  36. P.P. Lin, A.D. Pelton, and C.W. Bale, Computation of Ternary Molten Salt Phase Diagrams, J. Am. Ceram. Soc., 1979, 62(7-8), p 414-422

    Article  Google Scholar 

  37. M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties, CALPHAD, 1980, 4(1), p 1-12

    Article  Google Scholar 

  38. J. Sangster and A.D. Pelton, Thermodynamic Calculation of Phase Diagrams of the 60 Common-Ion Alkali Halide Ternary Systems Containing Cations Li, Na, K, Rb, Cs and Anions F, Cl, Br, I, J. Phase Equilib., 1991, 12(5), p 511-537

    Article  Google Scholar 

  39. Y. Dessureault, J. Sangster, and A.D. Pelton, Critical Evaluation of Thermodynamic Data and Phase Diagrams of the Hydroxide-Halide, Hydroxide-Nitrate, Nitrate-Nitrate, Nitrate-Halide and Hydroxide-Hydroxide Systems (AOH-AX, ANO3-AX, ANO3-BNO3, AOH-BOH) Where A, B = Li, Na, K and X = Cl, F, NO3, OH, J. Chem. Phys., 1990, 87(3), p 407-453, in French

    Google Scholar 

  40. J. Lumsden, Thermodynamics of Molten Salt Mixtures, Academic Press, London, 1966, p 183-255

    Google Scholar 

  41. J.W. Raade and D. Padowitz, Development of Molten Salt Heat Transfer Fluid with Low Melting Point and High Thermal Stability, J. Sol. Energy Eng., 2011, 133, p 031013-1-031013-6

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Qinghai Science & Technology Department of China under the contract number 2012-H-804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, F., Han, H. et al. Thermodynamic Modeling and Experimental Verification of Eutectic Point in the LiNO3-NaNO3-Ca(NO3)2 Ternary System. J. Phase Equilib. Diffus. 36, 606–612 (2015). https://doi.org/10.1007/s11669-015-0412-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0412-4

Keywords

Navigation