Skip to main content
Log in

Thermodynamic approach to quantitative assessment of propensity of metallic melts to amorphization

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

On thermodynamic grounds, it was found that key properties that control the capacity of molten metallic alloys for transition into an amorphous state are the excess (configurational) entropy and heat capacity of the liquid. Chemical short-range order in liquids exhibiting various ten-dencies to glass formation was analyzed on the basis of the associated solution theory and the results of detailed thermodynamic research on a wide set of alloys. An interrelation was established between the association, characteristics of molten alloys (viscosity η, activation energies of viscous flow, and crystallization) that determine the possibility of amorphization and characteristics of glassy state stability (glass transition point, Gibbs energy, and enthalpy of crystallization). It was demonstrated that the magnitude of the key functions is completely determined by the covalent constituent of chemical interaction between components and depends mainly on the entropy terms of association reactions. The prospects for developing the quantitative criteria of amorphization on the basis of the entropy of association was discussed. It was also shown that the suggested approach based on taking into accoun the specificity of chemical interaction between components can be useful for prediction of physical, chemical, and mechanical properties of solid amorphous metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Dembovskij and E.A. Chechetkina, Glass Formation, Nauka, Moscow, 1990, p 279 (in Russian)

    Google Scholar 

  2. A.I. Zaitsev, N.E. Zaitseva, E.Kh. Shakhpazov, and A.A. Kodentsov, Thermodynamic Properties and Phase Equilibria in Ni-Zr System. The Liquid to Amorphous State Transition, Phys. Chem. Chem. Phys., Vol 4 (No. 24), 2002, p 6047–6058

    Article  Google Scholar 

  3. A.I. Zaitsev, N.E. Zaitseva, V.V. Maltsev, J.P. Alekseeva, and S.F. Dunaev, Thermodynamics and Amorphization of Melt Al-La, Doklady RAN, Vol 393 (No. 3), 2003, p 357–360 (in Russian)

    Google Scholar 

  4. I. Gutzow, D. Kashchiev, and I. Avramov, Nucleation and Crystallization in Glass-Forming Melts. Old Problems and New Questions, J. Non-Cryst. Solids, Vol 73, 1985, p 477–499

    Article  Google Scholar 

  5. A. Inoue, High Strength Amorphous Alloys with Low Critical Cooling Rates (Overview), Mater. Trans. JIM., Vol 36 (No. 7), 1995, p 366–375

    Google Scholar 

  6. T. Zhang, A. Inoue, and T. Masumoto, The Effect of Atomic Size on the Stability of Supercooled Liquid for Amorphous (Ti, Zr, Hf) 65Ni25Al10 and (Ti, Zr, Hf) 65Cu25Al10 Alloys, Mater. Lett., Vol 15, 1993, p 379–382

    Article  Google Scholar 

  7. T. Zhang, A. Inoue, and T. Masumoto, Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K, Mater. Trans. JIM, Vol 32 (No. 11), 1991, p 1005–1010

    Google Scholar 

  8. B. Predel, Thermodynamic Investigations on the Formation and Decomposition of Metallic Glasses, Physica, Vol 103B, 1981, p 113–122

    Google Scholar 

  9. F. Sommer, Association Model for the Description of the Thermodynamic Functions of Liquid Alloys, Z. Metallkde., Vol 73 (No. 2), 1982, p 72–86

    Google Scholar 

  10. H.G. Krull, R.N. Singh, and F. Sommer, Generalised Association Model, Z. Metallkde., Vol 91 (No. 5), 2000, p 356–365

    Google Scholar 

  11. A.I. Zaitsev and N.E. Shelkova, Association and Amorphization in Metallic Melts: Fe-P Alloys, Z. Metallkde., Vol 91 (No. 12), 2000, p 992–998

    Google Scholar 

  12. E.A. Pastukhov, N.A. Vatolin, V.L. Lisin, V.M. Denisov and S.V. Kachin, Diffraction Investigation of High-Temperature Melts Structure, Ural Department of Russian Academy of Science, Ekaterinburg, 2003, p 353 (in Russian)

    Google Scholar 

  13. R. Bormann and K. Zolter, Determination of the Thermodynamic Functions and Calculation of Phase Diagrams for Metastable Phases, Phys. Status Solidi, Vol 131a, 1992, p 691–705

    Google Scholar 

  14. Z.H. Yan, T. Klassen, C. Mlehaelsen, M. Oehring, and R. Bormann, Inverse Melting in the Ti-Cr System, Phys. Rev. B, Vol 47 (No. 14), 1993, p 8520–8527

    Article  ADS  Google Scholar 

  15. K. Ohsaka, E.H. Trinh, J.C. Holzer, and W.L. Johnson, Gibbs Free Energy Difference Between the Undercooled Liquid and the β-Phase of a Ti-Cr Alloys, Appl. Phys. Lett., Vol 60 (No. 9), 1992, p 1079–1081

    Article  ADS  Google Scholar 

  16. I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans Green and Co., London, UK, 1954

    Google Scholar 

  17. A.I. Zaitsev and B.M. Mogutnov, A General Approach to Thermodynamics of High Temperature Liquid Solutions, High Temp. Mater. Sci., Vol 34 (No. 1–3), 1995, p 155–171

    Google Scholar 

  18. A.S. Krylov and A.M. Katsnelson, The Applications of the Model of Quasi-ideal Associated Solutions to the Calculation of the Thermodynamics of Ternary Melts, Z. Metallkde., Vol 84 (No. 9), 1993, p 641–644

    Google Scholar 

  19. A.I. Zaitsev and N.E. Zaitseva, Thermodynamic Approach to the Analyzing Melts Transition into Amorphous State and to Forecasting of Compositions Tending to Amorphization, Izv. Akad. Nauk., Ser. Fizicheskaia, Vol 65 (No. 10), 2001, p 1390–1401 (in Russian)

    Google Scholar 

  20. G. Adam and J.H. Gibbs, On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids, J. Chem. Phys., Vol 43, 1965, p 139–146

    Article  Google Scholar 

  21. Y. Bottinga, Configurational Entropy and the non-Newtonian Rheology of Homogeneous Silicate Liquids, Phys. Rev. B, Vol 49 (No. 1), 1994, p 95–99

    Article  ADS  Google Scholar 

  22. P. Richet and Y. Bottinga, Thermodynamic Properties of Silicate Glasses and Liquids: A Review, Rev. Geophys., Vol 24 (No. 1), 1986, p 1–25

    Google Scholar 

  23. P. Richet and D.R. Neuville, Thermodynamics of Silicate Melts: Configuration Properties, Adv. Phys. Geochem., Vol 10, 1992, p 132–161

    Google Scholar 

  24. W. Kauzmann, The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., Vol 43, 1948, p 219–256

    Article  Google Scholar 

  25. O.V. Mazurin, Structure and Stabilization of Inorganic Glasses, Nauka, Leningrad, USSR, 1978, p 62 (in Russian)

    Google Scholar 

  26. K.S. Gavrichev, L.N. Golushina, V.E. Gorbunov, A.I. Zaitsev, N.E. Zaitseva, B.M. Mogutnov, V.V. Molokanov, and A.V. Khoroshilov, The Absolution Entropy of Ni0.667Zr0.333 and Ni0.333Zr0.667 Amorphous Alloys, J. Phys. Condens. Mater., Vol 16, 2004, p 1995–2001

    Article  ADS  Google Scholar 

  27. A.I. Zaitsev, N.E. Zaitseva, Ju.P. Alexeeva, S.F. Dunaev, and Yu.S. Nechaev, Thermodynamics and Amorphization of the Copper-Zirconium Alloys, Phys. Chem. Chem. Phys., 2003, Vol 5 (No. 19), p 4185–4196

    Article  Google Scholar 

  28. A.I. Zaitsev, N.E. Zaitseva, and A.A. Kodentsov, Thermodynamic Properties and Phase Equilibria in the Iron-Boron System. Transition of the Fe-B melt into the Amorphous State, J. Mater. Chem., Vol 13 (No. 3), 2003, p 943–950

    Article  Google Scholar 

  29. A.I. Zaitsev, N.E. Zaitseva, and A.A. Kodentsov, A Thermodynamic Study of Liquid Fe-Si-B Alloys; an Influence of Ternary Associates on a Liquid-Glass Transition, Metall. Mater. Trans., Vol 34B (No. 6), 2003, p 887–898

    Google Scholar 

  30. A.I. Zaitsev, N.E. Zaitseva, J.P. Alexeeva, and S.F. Dunaev, Thermodynamic Properties and Amorphization of Ni-P Melt, Zhurn. Fiz. Khimii, Vol 77 (No. 11), 2003, p 1940–1950 (in Russian)

    Google Scholar 

  31. A.I. Zaitsev and N.E. Zaitseva, Thermodynamic Properties of Intermetallic Compounds and Solid Solutions in Cu-Zr System, Teplofizika Vysokihk Temperatur, Vol 41 (No. 1), 2003, p 49–56 (in Russian)

    Google Scholar 

  32. R. Kawabata, E. Ichise, and M. Iwase, Activities of Phosphorus in Liquid Ni+P Alloys Saturated with Solid Nickel, Metall. Mater. Trans., Vol 26B, 1995, p 783

    Google Scholar 

  33. N. Konstantinow, Nickel with Phosphorous Compounds, Z. Anorg. Chem., Vol 60, 1908, p 405–415 (in German)

    Article  Google Scholar 

  34. L.M. Jupko, A.A. Svirid, and S.V. Muchnik, Phase Equilibria in Alloys of a Nickel with Phosphorus, Poroschkovaya Metallurgiya, Vol 5, 1986, p 768 (in Russian)

    Google Scholar 

  35. H.R. Lillie, High Temperature Viscosities of Soda-Silica Glasses, J. Am. Ceram. Soc., Vol 22, 1939, p 367–374

    Article  Google Scholar 

  36. V.A. Pospelov, and K.S. Evstropev, Viscosity of Sodium-Silicate Melts, Zh. Fiz. Khimii, Vol 15, 1941, p 123 (in Russian)

    Google Scholar 

  37. J.P. Poole, Viscosite a Basse Temperature des Verres Alcalino-Silicates, Verres Refract., Vol 2, 1948, p 222–228

    Google Scholar 

  38. L. Shartsis, S. Spinner, and W. Capps, Density, Expansivity and Viscosity of Molten Alkaly Silicates, J. Am. Ceram. Soc., Vol 35, 1952, p 155–160

    Article  Google Scholar 

  39. J.O’M. Bockris, J.D. Mackenze, and J.A. Kitchener, Viscous Flow in Silica and Binary Liquid Silicates, Trans. Faraday Soc., Vol 51, 1955, p 1734–1748

    Article  Google Scholar 

  40. G.S. Meiling and D.R. Uhlmann, Crystallization and Melting Kinetics of Sodium Disilicate, Phys. Chem. Glasses, Vol 8 (No. 2), 1967, p 62–68

    Google Scholar 

  41. J. Wang, Viscositie of Liquid and Supercooled Liquid Nickel-Phosphorus Alloys, Prog. Nat. Sci., Vol 1 (No. 1), 1991, p 16

    Google Scholar 

  42. Y. Nishi and A. Yoshihiro, Viscosities of Metal-Metalloid Supercooled Liquid, Scripta Metall., Vol 19, 1985, p 1023

    Article  Google Scholar 

  43. V.I. Ladjanov, L.V. Kamaeva, and A.L. Beltjukov, Structure and Properties of Metal and Slag Melts, Proc. X Russian Conference, Part 4: Interrelation of Structure and Properties of Various States (Crystalline, Quasicrystalline, Amorphous, Liquid), G.V. Gel’chinskii, Ed, YuUrGU, Chelyabinsk, Russia, 2001, p 53 (in Russian)

    Google Scholar 

  44. P. Desre, I. Ansara, P. Sremer, and J.C. Joud, Concentration Fluctuation Diagram in Undercooled Liquid and Glass Forming Ability, Application to the Fe-Si-B System, Calphad, Vol 13, 1989, p 89–96

    Article  Google Scholar 

  45. N. Decristofaro, A. Freilich, and G. Fish, Formation and Magnetic Properties of Fe-B-Si Metallic Glasses, J. Mater. Sci., Vol 17, 1982, p 2365

    Article  Google Scholar 

  46. C. Antonione, L. Battezzati, G. Cocco, and F. Marino, Thermochemical and Structural Investigation of Crystallization in Fe-B and Fe-Si-B Glasses, Z. Metallkde., Vol 75, H. 9, 1984, p 714–718

    Google Scholar 

  47. S.D. Kaloshkin and I.A. Tomilin, The Crystallization Kinetics of Amorphous Alloys, Thermochim. Acta, Vol 280/281, 1996, p 303–317

    Article  Google Scholar 

  48. M.A. Gibson and G.W. Delamore, Crystallization Kinetics of Fe-Si-B Metallic Glasses, Canad. Metall. Quart., Vol 29, 1990, p 227–231

    Google Scholar 

  49. V. Dologan and E. Dologan, Electrical Receptivity and Crystallization of Glassy Fe100−x B x , Fe80−x Co x B20, Fe78B22−x Si x and Fe100−x B x−y Si y Alloys, Rev. Roum. Phys., Vol 32, 1987, p 1077–1090

    Google Scholar 

  50. A.I. Zaitsev and N.E. Zaitseva, Thermodynamic Properties of the Melt and Phase Equilibria in the Fe-B System. Transformation of Liquid Fe-B Alloys into Amorphous State, Russ. J. Phys. Chem., Vol 76, 2002, p 29–40

    Google Scholar 

  51. H. Okamoto, Al-La (Aluminum-Lanthanum), J. Phase Equilibria, Vol 21 (No. 2), 2000, p 205

    Article  MathSciNet  Google Scholar 

  52. A. Inoue, T. Zhang, and T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region, Mater. Trans. JIM., Vol 30 (No. 12), 1989, p 965–972

    Google Scholar 

  53. A. Inoue, K. Ohtera, and T. Masumoto, New Amorphous Al-Y, Al-La, and Al-Ce Alloys Prepared by Melt Spinning, Jpn. J. Appl. Phys., Vol 27 (No. 5), 1988, p L736-L739

    Article  ADS  Google Scholar 

  54. H. Feufel, F. Schuller, J. Schmid, and F. Sommer, Calorimetry Study of Ternary Liquid Al-La-Ni Alloys, J. Alloys Compd., Vol 257, 1997, p 234–244

    Article  Google Scholar 

  55. G. Borzone, N. Parodi, R. Ferro, J.P. Bros, J.P. Dubes, and M. Gambino, Heat Capacity and Phase Equilibria in Rare Earth Alloy System. R-rich R-Al Alloys (R=La, Pr and Nd), J. Alloys Compd., Vol 320, 2001, p 242–250

    Article  Google Scholar 

  56. E. Kneller, Y. Khan, and U. Gorres, The Alloy System Copper-Zirconium. Part II. Crystallization of the Glasses from Cu70Zr30 to Cu26Zr74, Z. Metallkde., 1986, Vol 77 (No. 3), p 152

    Google Scholar 

  57. I. Ansara, A. Pasturel, and K.H.J. Buschow, Enthalpy Effects in Amorphous Alloys and Intermetallic Compounds, Phys. Status Solidi (a), Vol 69, 1982, p 447

    Article  Google Scholar 

  58. Z. Altounian, Tu. Gou-Ho, and J.O. Strom-Olsen, Crystallization Characteristics of Cu-Zr Metallic Glasses from Cu70Zr30 to Cu25Zr75, J. Appl. Phys., Vol 53, 1982, p 4755

    Article  ADS  Google Scholar 

  59. K.H.J. Buschow, Thermal Stability of Amorphous Zr-Cu Alloys, J. Appl. Phys., Vol 52, 1981, p 3319

    Article  ADS  Google Scholar 

  60. A.J. Kerns, D.E. Polk, R. Ray, and B.C. Giessen, Thermal Behavior of Zr-Cu Metallic Glasses, Mater. Sci. Eng., Vol 38, 1979, p 49

    Article  Google Scholar 

  61. Y. Calvayrac, J.P. Chevalier, M. Harmelin, and A. Quivy, On the Stability and Structure of Copper-Zirconium Based Glasses, Philos. Mag., Vol B48, 1983, p 323

    Google Scholar 

  62. R.G. Walmsley, PhD Thesis, Stanford University, California, 1981

    Google Scholar 

  63. Z. Altonian, Tu. Gou-Hua, J.O. Strom-Olsen, and W.B. Muir, Crystallization of Amorphous CuZr2, Phys. Rev. B, Vol 24, 1981, p 505

    Article  ADS  Google Scholar 

  64. R.L. Freed and J.B. Vander Sande, Study of the Crystallization of Two Non-Crystalline Cu-Zr Alloys, J. Non-Cryst. Solids, Vol 27, 1978, p 9

    Article  Google Scholar 

  65. R.L. Freed and J.B. Vander Sande, The Metallic Glass Cu56Zr44: Devitrification and Effects of Devitrification on Mechanical Properties, Acta Metall., 1980, Vol 28, p 103

    Article  Google Scholar 

  66. M. Lasoka and M. Harmelin, Energetics of Glass-to-Crystal Transition in Cu60Zr40-based Ternary Glasses, Scripta Metall., Vol 18, 1984, p 1091

    Article  Google Scholar 

  67. F.R. Szofran, G.R. Gruzalsky, J.W. Weymouth, and D.J. Sellmyer, Electronic and Magnetic Properties of Amorphous and Crystalline Zirconium-Copper-Iron Zr40Cu60-x Fe x Alloys, Phys. Rev. B, Vol 14, 1976, p 2160

    Article  ADS  Google Scholar 

  68. J.M. Vitek, J.B. Vander Sande, and N.J. Grant, Crystallization of an Amorphous Cu-Zr Alloy, Acta Metall., Vol 23, 1975, p 165

    Article  Google Scholar 

  69. P.G. Zielinski, J. Ostatek, M. Kijek, and H. Matayja, Formation and Stability of Metallic Glasses Containing Zirconium, in Proc. 3rd Int. Conf. RQM, B. Cantor, Ed., Chameleon, London, UK, 1978, p 337

    Google Scholar 

  70. Y. Calvayrac, M. Harmelin A. Quivy, J.P. Chevalier, and J. Bigot, Cold-rolling and Subsequent Annealing of Amorphous Copper-Zirconium (Cu60Zr40), Scripta Metall., Vol 14 (No. 8), 1980, p 895

    Article  Google Scholar 

  71. D.E. Polk, C.E. Duble, and B.C. Giessen, The Effect of Oxygen Additions on the Properties of Amorphous Transition Metal Alloys, Proc. 3rd Int. Conf. RQM, B. Cantor, Ed., Chameleon, London, UK, 1978, p 220

    Google Scholar 

  72. A.I. Zaitsev, N.E. Zaitseva, V.V. Mal’tsev, N.A. Arutyunyan, and S.F. Dunaev, Thermodynamics and Amorphization of the Ni-La System Vol 402 (2)

  73. A.I. Zaitsev, M.A. Zemchenko, and B.M. Mogutnov, Thermodynamic Properties of {(1 − x) Si+xFe}. J. Chem. Thermodynamics, Vol 23, 1991, p 831–849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.I., Zaitseva, N.E. Thermodynamic approach to quantitative assessment of propensity of metallic melts to amorphization. J Phs Eqil and Diff 26, 240–253 (2005). https://doi.org/10.1007/s11669-005-0111-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-005-0111-7

Keywords

Navigation