Skip to main content
Log in

Assessment of the Mn-O system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Experimental data on the thermodynamics and the phase diagram of the Mn-O system were reviewed, and by application of the CALPHAD method, a consistent set of thermodynamic model parameters was optimized. The phases pyrolusite (MnO2), bixbyite (Mn2O3), and hausmannite (Mn3O4) were described as stoichiometric compounds. Manganosite (Mn1−xO) was described using the compound-energy model and the liquid described using the two-sublattice model for ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Post: “Crystal Structures of Manganese Oxide Minerals” in Biomineralisation Processes of Iron and Manganese, Calena Supplement 21, N.C.W. Skinner and R.W. Fitzpatrick, ed., Catena Verlag, Reiskirchen, Germany, 1992, pp. 51–73.

    Google Scholar 

  2. W.H. Baur: “Rutile-Type Compounds. V. Refinement of MnO2 and MgF2,” Acta Crystallogr., 1976, 32, pp. 2200–04.

    Google Scholar 

  3. S. Geller: “Structures of Alpha-Mn2O3 (Mn0.983Fe0.017)2 and (Mn0.37Fe0.63)2O3 and Relation to Magnetic Ordering,” Acta Crystallogr., 1971, 27, pp. 821–28.

    Google Scholar 

  4. K. Satomi: “Oxygen Positional Parameters of Tetragonal Mn3O4,” J. Phys. Soc. Jpn., 1961, 16, pp. 258–66.

    ADS  Google Scholar 

  5. H.F. McMurdie and E. Golovato: “Study of the Modifications of Manganese Dioxide,” J. Res. Natl. Bur. Stand., 1948, 41, pp. 589–600.

    Google Scholar 

  6. S. Sasaki, K. Fujino, Y. Takéuchi, and R. Sadananga: “On the Estimation of Atomic Charges by the X-ray Method for Some Oxides and Silicates,” Acta Crystallogr., 1980, 36, pp. 904–15.

    Google Scholar 

  7. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed. ASM International, Metals Park, OH, 1990, 3, pp. 2583–85.

    Google Scholar 

  8. A. Fernández Guillermet and W. Huang: “Thermodynamic Analysis of Manganese,” Int. J. Thermophys., 1990, 11, pp. 949–69.

    ADS  Google Scholar 

  9. A.T. Dinsdale: “SGTE Data for Pure Elements,” Calphad, 1991, 15, pp. 317–425.

    Google Scholar 

  10. J-O Andersson, A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: “A Compound-Energy Model of Ordering in a Phase With Sites of Different Coordination Numbers,” Acta Metall., 1986, 34, pp. 437–45.

    Google Scholar 

  11. M. Hillert, B. Jansson, and B. Sundman: “Application of the Compound-Energy Model to Oxide Systems,” Z. Metallkde., 1988, 79, pp. 81–87.

    Google Scholar 

  12. M. Hillert, B. Jansson, B. Sundman, and J. Ågren: “A Two-Sublattice Model for Molten Solutions With Different Tendency for Ionization,” Metall. Trans. A, 1985, 16A, pp. 261–66.

    ADS  Google Scholar 

  13. B. Sundman: “Modification of the Two-Sublattice Model for Liquids,” Calphad, 1991, 15, pp. 109–19.

    Google Scholar 

  14. M. Wang and B. Sundman: “Thermodynamic Assessment of the Mn-O System,” Metall. Trans. B, 1992, 23, pp. 821–31.

    Google Scholar 

  15. C. Benedicks and J. Löfquist: Non-Metallic Inclusions in Iron and Steel. Chapman & Hall, London, UK, 1930.

    Google Scholar 

  16. M. Le Blanc and G.Z. Wehner: “Contribution to the Knowledge of the Manganese Oxides,” Phys. Chem. Abt. A, 1934, 168, pp. 59–78 (in German).

    Google Scholar 

  17. Q. Chen: “Local Equilibrium Method in Studying Phase Diagram of Mn-MnO System,” Acta Metall. Sinica, 1988, 24, pp. B440–42.

    Google Scholar 

  18. H. Schenck, M.G. Frohberg, and R, Nünninghoff: “The MnO(-FeO)-MgO(-CaO) System and Its Equilibria With Liquid Manganese and Iron-Manganese Alloys,” Arch. Eisenhüttenwes., 1964, 35, pp. 269–77 (in German).

    Google Scholar 

  19. K.T. Jacob: “Solubility and Activity of Oxygen in Liquid Manganese,” Metall. Trans. B, 1981, 12, pp. 675–78.

    Google Scholar 

  20. G. Trömel, W. Fix, K. Koch, and F. Schaberg: “The Phase Diagram of the Manganese-Oxygen System,” Erzmetall., 1976, 29, pp. 234–37 (in German).

    Google Scholar 

  21. J.H. Andrew, W.R. Maddocks, and D. Howat: “Part I. The Equilibrium of the System FeO-MnO,” J. Iron Steel Inst., 1931, 124, pp. 283–95.

    Google Scholar 

  22. H. Schenck, N.G. Schmahl, and A.K. Biswas: “Investigations on the Iron(II)-Oxide-Manganese(II)-Oxide Phase Diagram and Its Relation to the Deoxidation of Pure Iron With Manganese,” Arch. Eisenhüttenwes., 1957, 28, pp. 517–21 (in German).

    Google Scholar 

  23. W.A. Fischer and H.J. Fleischer: “The Manganese Distribution Between Iron Melts and Iron(II)-Oxide Slags in MnO-Crucibles at 1520 to 1770 C,” Arch. Eisenhüttenwes., 1961, 32, pp. 1–10.

    Google Scholar 

  24. E. Schürmann and N. Bannenberg: “Metal-Slag Equilibria in the Iron-Manganese-Sulfur-Oxygen System as Basis for the Manganese Deoxidation of Steel Melts in the Presence of Sulfur,” Arch. Eisenhüttenwes., 1984, 55, pp. 349–58 (in German).

    Google Scholar 

  25. F.P. Glasser: “The System MnO-SiO2,” Am. J. Sci., 1958, 256, pp. 398–412.

    ADS  Google Scholar 

  26. A.Z. Hed and D. Tannhauser: “Contribution to the Mn-O Phase Diagram at High Temperature,” J. Electrochem. Soc., 1967, 114, pp. 314–18.

    Google Scholar 

  27. N.G. Schmahl and D.F.K. Hennings: “The Phase Diagram of the Mn3O4-MnO System and Its Pressures of Dissociation,” Arch. Eisenhüttenwes., 1969, 40, pp. 395–99 (in German).

    Google Scholar 

  28. H. Von Warthenberg, H.J. Reusch, and E. Saran: “Melting Point Diagrams of Highly Refractory Oxides. VII. Systems With CaO and BeO,” Z. Anorg. Allg. Chem., 1937, 230, pp. 257–76 (in German).

    Google Scholar 

  29. W.C. Hahn and A. Muan: “Studies in the System Mn-O: The Mn2O3-Mn3O4-MnO Equilibria,” Am. J. Sci., 1960, 258, pp. 66–78.

    ADS  Google Scholar 

  30. H.J. Van Hook and M.L. Keith: “The System Fe3O4-MN3O4”, Am. Mineral., 1958, 43, pp. 69–83.

    Google Scholar 

  31. J.B. Price and J.B. Wagner: “Diffusion of Manganese in Single Crystalline Manganous Oxide,” J. Electrochem. Soc., 1970, 117, pp. 242–47.

    Google Scholar 

  32. A.Z. Hed and D.S. Tannhauser: “High-Temperature Electrical Properties of Manganese Monoxide,” J. Chem. Phys., 1967, 47, pp. 2090–103.

    ADS  Google Scholar 

  33. I. Branski and N.M. Tallan: “A Gravimetric Study of Nonstoichiometric MnO,” J. Electrochem. Soc., 1971, 118, pp. 788–93.

    Google Scholar 

  34. N.L. Peterson and W.K. Chen: “Cation Self-Diffusion and the Isotope Effect in Mn1−δO,” J. Phys. Chem. Solids, 1982, 43, pp. 29–38.

    ADS  Google Scholar 

  35. P. Kofstad: “Defects and Diffusion in MnO,” J. Phys. Chem. Solids, 1983, 44, pp. 879–89.

    ADS  Google Scholar 

  36. M.W. Davies and F.D. Richardson: “The Non-Stoichiometry of Manganous Oxide,” J. Chem. Soc., Faraday Trans., 1959, 55, pp. 604–10.

    Google Scholar 

  37. J. Couzin and A. Duquesnoy: “Influence of the Volatility of a Non-Stoichiometric Oxide on the Experimental Determination of Extensive Properties,” C.R. Acad. Sci., Sér. C: Sci. Chim., 1975, 281, p. 259 (in French).

    Google Scholar 

  38. A. Rossberg, H. Oppermann, and F. Glathe: “Investigations to Determine the Phase Width of Transported MnO-Crystals,” Z. Anorg. Allg. Chem., 1987, 554, pp. 166–71 (in German).

    Google Scholar 

  39. T.E. Moore, M. Ellis, and P.W. Selwood: “Solid Oxides and Hydroxides of Manganese,” J. Am. Chem. Soc., 1950, 72, pp. 856–66.

    Google Scholar 

  40. B.E.F. Fender and F.D. Riley: “Thermodynamic Properties of Mn1−xO,” in Chem. Extended Defects Non-Metal. Solids, L. Eyring, ed., North Holland, Amsterdam, The Netherlands, 1970, pp. 54–61.

    Google Scholar 

  41. N.G. Schmahl and D. Hennings: “The Nonstoichiometry of the Manganese(II)-Oxide in Thermal Equilibrium,” Z. Phys. Chem., 1969, 63, pp. 111–24.

    Google Scholar 

  42. M. Keller and R. Dieckmann: “Defect Structure and Transport Properties of Manganese Oxides: (I) The Nonstoichiometry of Manganosite (Mn1−δO),” Ber. Bunsenges. Phys. Chem., 1985, 89, pp. 883–93.

    Google Scholar 

  43. H.S. O’Neill and M.I. Pownceby: “Thermodynamic Data From Redox Reactions at High Temperatures. II. The MnO-Mn3O4 Oxygen Buffer and Implications for the Thermodynamic Properties of MnO and Mn3O3,” Contrib. Mineral. Petrol., 1993, 114, pp. 315–20.

    ADS  Google Scholar 

  44. C. Picard and P. Gerdanian: “High Temperature Study of Manganese Monoxide,” J. Solid State Chem., 1974, 11, pp. 190–202.

    ADS  Google Scholar 

  45. K. Schwerdtfeger and A. Muan: “Equilibria in the System Fe-Mn-O Involving (Fe,Mn)O and (Fe,Mn)3O4 Solid Solutions,” Trans. Metall. Soc. AIME, 1967, 239, pp. 1114–19.

    Google Scholar 

  46. R.W. Millar: “The Specific Heats at Low Temperatures of Manganous Oxide, Manganous-Manganic Oxide and Manganese Dioxide,” J. Am. Chem. Soc., 1928, 50, pp. 1875–83.

    Google Scholar 

  47. C.H. Shomate: “Heats of Formation of Manganomanganic Oxide and Manganese Dioxide,” J. Am. Chem. Soc, 1943, 65, pp. 785–89.

    Google Scholar 

  48. N.G. Schmahl and F. Shenouda: “The Thermal Decomposition of Manganese(III)-Oxide (Mn2O3),” Arch. Eisenhüttenwes., 1963, 34, pp. 511–18 (in German).

    Google Scholar 

  49. A. Bergstein and J. Vintera: “The Thermal Decomposition of Manganese Carbonates,” Coll. Czech. Chem. Commun., 1956, 22, pp. 884–95.

    Google Scholar 

  50. D.R. Petzold: “Growth and Properties of Manganese, Cobalt, and Manganese Zinc Crystals,” Kristall und Technik, 1971, 6, pp. 53–57 (in German).

    Google Scholar 

  51. A. Schmier and G. Sterr: “Contribution to the Knowledge of the Hausmannite Phase,” Z. Anorg. Allg. Chem., 1966, 346, pp. 181–87 (in German).

    Google Scholar 

  52. F.C.M. Driessens: “Place and Valence of the Cations in Mn3O4 and Some Related Manganates,” Inorg. Chim. Acta, 1967, 1, pp. 193–207.

    Google Scholar 

  53. M. Keller and R. Dieckmann: “Defect Structure and Transport Properties of Manganese Oxides: (II) The Nonstoichiometry of Hausmannite (Mn3−δO4),” Ber. Bunsenges. Phys. Chem., 1985, 89, pp. 1095–104.

    Google Scholar 

  54. R. Metselaar, R.E.J. Van Tol, and P. Piercy: “The High Electrical Conductivity and Thermoelectric Power of Mn3O4 at High Temperatures,” J. Solid State Chem., 1981, 38, pp. 335–41.

    ADS  Google Scholar 

  55. J. Southard and G.E. Moore: “High-Temperature Heat Content of Mn3O4, MnSiO3 and Mn3C,” J. Am. Chem. Soc, 1942, 64, pp. 1769–70.

    Google Scholar 

  56. K.S. Irani, A.P.B. Sinha, and A.B. Biswas: “Effect of Temperature on the Structure of Manganates,” J. Phys. Chem. Solids, 1962, 23, pp. 711–27.

    ADS  Google Scholar 

  57. A.V. Ramano Rao and V.B. Tare: “Determination of Free Energy of Formation, Heat and Temperature of Transformation of Mn3O4,” Trans. Inst. Mining Metall., 1973, 82, pp. C34–37.

    Google Scholar 

  58. K. Hochgeschwender and T.R. Ingraham: “Use of Thermal Conductivity Gas Analysis for Thermodynamic Measurements of the Dissociation of CuO, Mn2O3 and MnO2,” Can. Metall. Quart., 1967, 6, pp. 71–84.

    Google Scholar 

  59. S. Geller and G.P. Espoinosa: “Magnetic and Crystallographic Transitions in Sc3+, Cr3+, and Ga3+ Substituted Mn2O3,” Phys. Rev. B. 1970, 1, pp. 3763–69.

    ADS  Google Scholar 

  60. R.A. Robie and B.S. Hemingway: “Low-Temperature Molar Heat Capacities and Entropies of MnO2 (Pyrolusite), Mn3O4 (Hausmanite), and Mn2O3 (Bixbyite),” J. Chem. Thermodyn., 1985, 17, pp. 165–87.

    Google Scholar 

  61. K.T. Jacob and M.V. Sriram: “Phase Relations and Gibbs Energies in the System Mn-Rh-O,” Metall. Mater. Trans. A, 1994, 25A, pp. 1347–57.

    ADS  Google Scholar 

  62. J.S. Huebner and M. Sato: “The Oxygen Fugacity-Temperature Relationships of Manganese Oxide and Nickel Oxide Buffers,” Am. Mineral., 1970, 55, pp. 934–52.

    Google Scholar 

  63. D.Q. Kim, Y. Wilbert, and F. Marion: “On the Direct Determination of the Equilibria of the Manganese Oxides at High Temperatures,” C.R. Acad. Sci. Sér. C: Sci. Chim., 1966, 262, pp. 756–58 (in French).

    Google Scholar 

  64. K. Schwerdtfeger: “Measurement of Oxygen Activity in Iron, Iron-Silicon, Manganese, and Iron-Manganese Melts Using Solid Electrolyte Galvanic Cells,” Trans. Metall. Soc. AIME, 1967, 239, pp. 1276–87.

    Google Scholar 

  65. M. Keller, J. Xue, and R. Dieckmann: “Electrochemical Investigation of the Oxygen Activity at the Manganosite-Hausmannite Equilibrium,” J. Electrochem. Soc., 1991, 138, pp. 3398–401.

    Google Scholar 

  66. R.N. Blumenthal and D.H. Whitmore: “Electrochemical Measurements of Elevated Temperature Thermodynamic Properties of Certain Iron and Manganese Oxide Mixtures,” J. Am. Ceram. Soc., 1961, 44, pp. 508–12.

    Google Scholar 

  67. G.G. Charette and S.N. Flengas: “Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu, and Mn, by EMF Measurements,” J. Electrochem. Soc., 1968, 115, pp. 796–804.

    Google Scholar 

  68. M. Chou: “Calibration of Oxygen Buffers at Elevated P and T Using the Hydrogen Fugacity Sensor,” Am. Mineral., 1978, 63, pp. 690–703.

    Google Scholar 

  69. R.J. Meyer and K. Rötgers: “The Temperatures of Dissociation of the Manganese Oxides MnO2 and Mn2O3 in Air and Oxygen,” Z. Anorg. Chem., 1908, 57, pp. 104–12 (in German).

    Google Scholar 

  70. F. Shenouda and S. Aziz: “Equilibria and Hysteresis in the System Mn2O3-Mn3O4-O2,” J. Appl. Chem., 1967, 17, pp. 258–62.

    Google Scholar 

  71. T.R. Ingraham: “Thermodynamics of the Mn-S-O System Between 1000K and 1250K,” Can. Metall. Quart., 1966, 5, pp. 109–22.

    Google Scholar 

  72. E.M. Otto: “Equilibrium Pressures of Oxygen Over Mn2O3-Mn3O4 at Various Temperatures,” J. Am. Chem. Soc., 1964, 111, pp. 88–92.

    Google Scholar 

  73. C. Klingsberg and R. Roy: “Solid-Solid and Solid-Vapor Reactions and a New Phase in the System Mn-O,” J. Am. Ceram. Soc., 1960, 48, pp. 620–26.

    Google Scholar 

  74. V.G. Vlasov and V.A. Kozlov: “Kinetics of the Dissociation of Manganese Oxides,” Russ. J. Phys. Chem., 1958, 32, pp. 2608–13 (in Russian).

    Google Scholar 

  75. E.M. Otto: “Equilibrium Pressures of Oxygen Over MnO2-Mn2O3 at Various Temperatures,” J. Electrochem. Soc., 1965, 112, pp. 367–70.

    Google Scholar 

  76. P. Askenasy and S. Klonowski: “On the Manganese Melt,” Z. Elektrochem., 1910, 16, pp. 104–14 (in German).

    Google Scholar 

  77. C.B. Alcock and S. Zador: “Thermodynamic Study of the Manganese/Manganous-Oxide System by the Use of Solid Oxide Electrolytes,” Electrochim. Acta, 1967, 12, pp. 673–77.

    Google Scholar 

  78. B. Sundman: “An Assessment of the Fe-O System,” J. Phase Equilib., 1991, 12, pp. 127–40.

    Google Scholar 

  79. H.S. O’Neill and M.I. Pownceby: “Thermodynamic Data From the Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, With Revised Values for the Fe-‘FeO’, Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers and New Data for the W-WO2 Buffer,” Contrib. Mineral. Petrol., 1993, 114, pp. 296–314.

    ADS  Google Scholar 

  80. SGTE Substance Database, Version 1997, SGTE (Scientific Group Thermodata Europe), Grenoble, France, 1997.

  81. M. Chen, B. Hallstedt, and L.J. Gauckler: “Thermodynamic Assessment of the Co-O System,” J. Phase Equilib. (in press).

  82. H.E. Kissinger, H.F. McMurdie, and B.S. Simpson: “Thermal Decomposition of Manganous and Ferrous Carbonates,” J. Am. Ceram. Soc., 1956, 39, pp. 168–72.

    Google Scholar 

  83. M.P. Dubois and M.G. Urbain: “Hydrates and Allotropic Variations of Manganese Sesquioxide,” Cryst. Rev., 1934, 199, pp. 1416–18 (in French).

    Google Scholar 

  84. J. Kleinclauss, R. Mainard, H. Fousse, N. Ciret, D. Bour, and A.J. Pointon: “Thermogravimetric Study of the Antiferromagnetic Solid Solutions pMnO-qCoO,” J. Phys. C: Solid State Phys., 1981, 14, pp. 1163–77.

    ADS  Google Scholar 

  85. J.L. Shapiro, B.F. Woodfield, R. Stevens, J. Boerio-Goates, and M.L. Wilson: “Molar Heat Capacity and Thermodynamic Function of the Type II Antiferromagnet MnO,” J. Chem. Thermodyn., 1999, 31, pp. 725–39.

    Google Scholar 

  86. S.S. Todd and K.R. Bonnickson: “Low Temperature Heat Capacities and Entropies at 298.15 K of Ferrous Oxide, Manganous Oxide and Vanadium Monoxide,” J. Am. Chem. Soc, 1951, 73, pp. 3894–95.

    Google Scholar 

  87. K. Chhor, J.F. Bocquet, and C. Pommier: “Heat Capacity and Thermodynamic Behaviour of Mn3O4 and ZnMn2O4 at Low Temperatures,” J. Chem. Thermodyn., 1986, 18, pp. 89–99.

    Google Scholar 

  88. E.G. King: “Low-Temperature Heat Capacity and Entropies at 298.16 K of Manganese Sesquioxide and Niobium Pentoxide,” J. Am. Chem. Soc, 1954, 76, pp. 3289–91.

    Google Scholar 

  89. K.K. Kelley and G.E. Moore: “Specific Heats at Low Temperatures of Manganese Carbide and Manganese Dioxide,” J. Am. Chem. Soc., 1943, 65, pp. 782–85.

    Google Scholar 

  90. J. Southard and C.H. Shomate: “Heat of Formation and High-Temperature Heat Content of Manganous Oxide and Manganous Sulfate. High-Temperature Heat Content of Manganese,” J. Am. Chem. Soc, 1942, 64, pp. 1769–70.

    Google Scholar 

  91. S. Fritsch and A. Navrotsky: “Thermodynamic Properties of Manganese Oxides,” J. Am. Ceram. Soc., 1996, 79, pp. 1761–68.

    Google Scholar 

  92. R.L. Orr: “High Temperature Heat Content of Manganese Sesquioxide and Vanadium Monoxide,” J. Am. Chem. Soc, 1954, 76, pp. 857–58.

    Google Scholar 

  93. G.E. Moore: “Heat Content of Manganese Dioxide and Carbonate at High Temperatures,” J. Am. Chem. Soc., 1943, 65, pp. 1398–99.

    Google Scholar 

  94. W.G. Mixter: “The Heat of Formation of the Oxides of Cobalt and Nickel; and Sixth Paper of the Heat of Combination of Acidic Oxides With Sodium Oxide,” Am. J. Sci., 1910, 30, pp. 193–201.

    ADS  Google Scholar 

  95. H. Le Chatelier and M. Daubrée: “On the Heat of Formation of Some Manganese Compounds,” Cryst. Rev., 1896, 122, pp. 80–82 (in French).

    Google Scholar 

  96. M. Guntz: “Heat of Formation of Manganese Oxides,” Compt. Rend., 1896, 122, pp. 465–69 (in French).

    Google Scholar 

  97. W.A. Roth: “On the Thermochemistry of Iron, Manganese and Nickel,” Z. Angew. Chem., 1929, 42, pp. 981–96 (in German).

    Google Scholar 

  98. H. Siemonsen: “Redetermination of the Heats of Formation of the Manganese Oxides,” Z. Elektrochem., 1939, 45, pp. 637–45 (in German).

    Google Scholar 

  99. H. Ulich and H. Siemonsen: “Contribution to the Metallurgy of Manganese by Thermochemical Measurements and Equilibria Calculations,” Arch. Eisenhüttenwes., 1940, 14, pp. 27–34 (in German).

    Google Scholar 

  100. O. Ruff and E. Gersten: “The Heat of Formation of Manganese Oxides,” Ber. Deutsche Chem. Ges., 1913, 46, p. 400 (in German).

    Google Scholar 

  101. A.D. Mah: “Thermodynamic Properties of Manganese and Its Compounds” in Thermodynamic Properties of Manganese and its Compounds, Technical Report, Bureau of Mines Report of Investigations 5600, U.S. Government Printing Office, Washington DC, 1960.

    Google Scholar 

  102. L. Brewer: “The Thermodynamic Properties of the Oxides and Their Vaporization Processes,” Chem. Rev., 1953, 52, pp. 1–65.

    Google Scholar 

  103. F.D. Rossini: “Selected Values of Chemical Thermodynamic Properties” in Selected Values of Chemical Thermodynamic Properties, Technical Report, U.S. Natl. Bureau of Standards Circ. 500, 1952.

  104. R.A. Robie and D.R. Waldbaum: “Thermochemical Properties of Minerals and Related Substances at 298.15K (25C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures,” Technical Report, Geological Survey Bulletin 1259, 1968.

  105. O. Kubaschewski, C.B. Alcock, and P.J. Spencer: Materials Thermochemistry, 6th ed. Pergamon Press, Oxford, U.K., 1993.

    Google Scholar 

  106. O. Knacke, O. Kubaschewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer-Verlag, Berlin, Germany, 1991.

    Google Scholar 

  107. L.B. Pankratz: “Thermodynamic Properties of Elements and Oxides,” Technical Report, Bureau of Mines Bulletin 672, 1982.

  108. T.A. Zordan and L.G. Hepler: “Thermochemistry and Oxidation Potentials of Manganese and Its Compounds,” Chem. Rev., 1968, 68, pp. 737–45.

    Google Scholar 

  109. M. Temkin: “Mixtures of Fused Salts as Ionic Solutions,” Acta Physicochim. URSS, 1945, 20, pp. 411–20.

    Google Scholar 

  110. E.A. Guggenheim: “The Theoretical Basis of Raoult’s Law,” Trans. Faraday Soc., 1937, 33, pp. 151–56.

    Google Scholar 

  111. O. Redlich and A.T. Kister: “Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,” Ind. Eng. Chem., 1948, 40, pp. 345–48.

    Google Scholar 

  112. B. Hallstedt, D. Risold, and L.J. Gauckler: “Thermodynamic Assessment of the Copper-Oxygen System,” J. Phase Equilib., 1994, 15, pp. 483–89.

    Google Scholar 

  113. B. Sundman, B. Jansson, and J-O. Andersson: “The Thermo-Calc Databank System,” Calphad, 1985, 9, pp. 153–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundy, A.N., Hallstedt, B. & Gauckler, L.J. Assessment of the Mn-O system. JPE 24, 21–39 (2003). https://doi.org/10.1007/s11669-003-0004-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-003-0004-6

Keywords

Navigation