Skip to main content
Log in

Cyclic Plastic Deformation Behavior of TC4 Titanium Alloy Under Different Microstructures and Load Conditions Using Finite Element Method

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This paper focuses on the plastic deformation behavior of TC4 titanium alloy under cyclic loading by the finite element method. Finite element models were established based on the realistic microstructure whose volume fraction and gain size of primary α phase are 11.86% and 10.35 μm, respectively. The effect of cyclic loading conditions and microstructure characteristics on cyclic plastic deformation behavior of the alloy was analyzed. The results showed that due to the obvious difference in mechanical properties between primary α phase and transformed β matrix, their equivalent plastic strains are obviously different after different cycles of cyclic loading. Moreover, the equivalent plastic strain gradually decreases with the increase in primary α phase volume fraction, the decrease in primary α phase grain size, the decrease in strain amplitude and the increase in strain ratio, respectively. There is a close relationship between plastic damage and fatigue strength of the metal materials. The cyclic loading conditions and microstructure characteristics have a great influence on the fatigue life of TC4 titanium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.S. Tan, Q.Y. Sun, G.J. Zhang, Y.Q. Zhao, High-cycle fatigue of a titanium alloy: the role of microstructure in slip irreversibility and crack initiation. J. Mater. Sci. 55, 12476–12487 (2020)

    Article  CAS  Google Scholar 

  2. E.V. Naydenkin, I.V. Ratochka, O.N. Lykova, I.P. Mishin, Evolution of the structural phase state, deformation behavior, and fracture of ultrafine-grained near-β titanium alloy after annealing. J. Mater. Sci. 55, 9237–9244 (2020)

    Article  CAS  Google Scholar 

  3. Y. Long, W.H. Zhang, L. Peng, H.Y. Peng, X.Z. Li, X.L. Huang, Mechanical behaviors of ultrafine-grained Ti-6Al-4V alloy during compression at various strain rates. Metall. Mater. Trans. A 51, 4765–4776 (2020)

    Article  CAS  Google Scholar 

  4. J.L. Li, B.Y. Wang, S. Fang, P. Chen, A new process chain combining cross-wedge rolling and isothermal forging for the forming of titanium alloy turbine blades. Int. J. Adv. Manuf. Technol. 108(5–6), 1827–1838 (2020)

    Article  Google Scholar 

  5. X. Kong, Y.M. Wang, X. Zhang, Q. Yang, G.X. Zhang, L.N. Yang, R. Yang, Monitoring damage evolution in a titanium matrix composite shaft under torsion loading using acoustic emission. Acta Metall. Sin. Engl. Lett. 32(10), 1244–1252 (2019)

    Article  CAS  Google Scholar 

  6. R. Prasannavenkatesan, J.X. Zhang, D.L. McDowell, G.B. Olson, H.J. Jou, 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels. Int. J. Fatigue 31(7), 1176–1189 (2009)

    Article  CAS  Google Scholar 

  7. R. Prasannavenkatesan, C.P. Przybyla, N. Salajegheh, D.L. McDowell, Simulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels. Eng. Fract. Mech. 78(6), 1140–1155 (2011)

    Article  Google Scholar 

  8. T.Y. Yakovleva, Interrelation between micromechanisms of structural rearrangement of VT18U titanium alloy in fatigue fracture. Strength Mater. 32, 542–548 (2000)

    Article  CAS  Google Scholar 

  9. H. Ghonem, Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys. Int. J. Fatigue 32(9), 1448–1460 (2010)

    Article  CAS  Google Scholar 

  10. M. Jasiczek, D. Szczeniak, J. Kaczorowski, M. Innocenti, Investigation of fatigue failures of titanium alloy blades used in compressor modules of aeroderivative industrial gas turbines. J. Fail. Anal. Prev. 13(6), 689–696 (2013)

    Article  Google Scholar 

  11. Z.M. Wang, X.R. Wang, Y. Meng, Y.C. Zheng, Z.H. Zhao, Study on ultra-high cycle fatigue performance of TC32 titanium alloy. Heat Treat. Met. 44(Supplement), 1448–1460 (2019)

    Google Scholar 

  12. A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Transformation-induced, geiometrically necessary, dislocation-based flow curve modeling of dual-phase steels: effect of grain size. Metall. Mater. Trans. A 43A(10), 3850–3869 (2012)

    Article  Google Scholar 

  13. A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int. J. Plast. 43, 128–152 (2013)

    Article  CAS  Google Scholar 

  14. A. Ramazani, Y.L. Chang, U. Prahl, Characterization and modeling of failure initiation in bainite-aided DP steel. Adv. Eng. Mater. 16(11), 1370–1380 (2014)

    Article  CAS  Google Scholar 

  15. F. Bridier, P. Villechaise, J. Mendez, Slip and fatigue crack formation processes in an alpha/beta titanium alloy in relation to crystallographic texture on different scales. Acta Mater. 56(15), 3951–3962 (2008)

    Article  CAS  Google Scholar 

  16. V. Recina, B. Karlsson, High temperature low cycle fatigue properties of Ti-48Al-2Cr-2Nb gamma titanium: Aluminides cast in different dimensions. Scr. Mater. 43(7), 609–615 (2000)

    Article  CAS  Google Scholar 

  17. A. Helstroffer, S. Hemery, S. Andrieu, P. Villechaise, Low cycle fatigue crack initiation in Ti-5Al-5Mo-5V-3Cr in relation to local crystallographic orientations. Mater. Lett. 276, 128198 (2020)

    Article  CAS  Google Scholar 

  18. Y.Y. Sun, H. Chang, Z.G. Fang, Y. Wang, Y.C. Dong, Y.H. Guo, L. Zhou, Effect of microstructure on low cycle fatigue property of TC4 ELI titanium alloy. Rare Met. Mater. Eng. 49(5), 1623–1628 (2020)

    Google Scholar 

  19. L. Wang, K. Wang, Y.Q. Li, J.H. Huang, Z.Q. Wan, Low-cycle fatigue properties of TC4ELI titanium alloy. Titan. Ind. Prog. 35(2), 17–21 (2018)

    Google Scholar 

  20. K. Wang, Y.Q. Li, L. Wang, J.H. Huang, P. Chen, Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure. Hot Work. Technol. 47(10), 86–89 (2018)

    Google Scholar 

  21. Y.J. Zhang, Effect of loading frequency and strain ratio on low cycle fatigue life of 10CrNi5Mo high strength steel. Phys. Test Chem. Anal. Part A 46(3), 164–166 (2010)

    CAS  Google Scholar 

  22. G.X. Chen, Y. Peng, C.Y. Liu, Periodic plastic deformation behavior of Ti-6Al-4V titanium alloy based on strain controlling mode. J. Fail. Anal. Prev. 20, 597–604 (2020)

    Article  Google Scholar 

  23. Y. Xiong, Q. Yu, Y.Y. Jiang, Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios. Mater. Sci. Eng. A 649, 93–103 (2016)

    Article  CAS  Google Scholar 

  24. P. Guo. Research on damage behaviors of TC4-DT titanium alloys. Doctoral thesis, Northwestern Polytechnical University (2015)

  25. G. Lutjering, Influence of processing on microstructure and mechanical properties of (a + β) titanium alloys. Mater. Sci. Eng. A 243(1–2), 32–45 (1998)

    Article  Google Scholar 

  26. Q. Yu, J.X. Zhang, Y.Y. Jiang, Q.Z. Li, Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy. Int. J. Fatigue 44(9), 225–233 (2012)

    Article  CAS  Google Scholar 

  27. Y.J. Li, Investigation of fatigue properties and fatigue design diagram of titanium alloy Ti-6Al-4V. Doctoral thesis, East China University of Science and Technology (2014)

  28. X.J. Li, Simulation on the microcosmic mechanics response of duplex titanium alloy under cyclic loading. Master’s thesis, East China University of Science and Technology (2013)

Download references

Acknowledgments

The authors are grateful for the supports of the Scientific Research Project of Education Department of Hubei Province (Q20204502), and the Talent Introduction Project of Hubei Polytechnic University (19XJK19R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-xing Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Gx., Liu, Cy. Cyclic Plastic Deformation Behavior of TC4 Titanium Alloy Under Different Microstructures and Load Conditions Using Finite Element Method. J Fail. Anal. and Preven. 21, 678–688 (2021). https://doi.org/10.1007/s11668-021-01114-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01114-w

Keywords

Navigation