Skip to main content

Advertisement

Log in

Effects of Stress Amplitude and Cold Expansion Strengthening on the Fatigue Property of TC4 Titanium Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of stress amplitude and cold expansion strengthening treatment on TC4 titanium alloy by performing stress-controlled high-cycle fatigue (HCF) tests are studied. Results show that the fatigue life increases with the decrease in stress amplitude. The test at the small stress amplitude of 200 MPa tends to enter the very high-cycle fatigue domain with a life at the order of 107. Moreover, the fatigue life gets significantly increased by about 60-5% after cold expansion strengthening treatment with the expansion ratio (ER) equal to 2% at the stress amplitude of 400 and 250 MPa. The fracture morphology is characterized by scanning electron microscope (SEM). The crack generally initiates at the inner edge of the hole wall for the specimen without cold expansion treatment and the number of crack initiation site decreases with the decrease in stress amplitude; however, the crack nucleates at the entrance of mandrel. Moreover, the hardness of strengthened layer was increased by 33% determined by nanoindentation tests. Furthermore, the finite element analysis is performed to simulate the cold expansion process and determine the stress distribution around the hole to provide an explanation for the improved fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.D. Gopalakrishna, H.N. Narasimha Murthy, M. Krishna, M.S. Vinod, and A.V. Suresh, Cold Expansion of Holes and Resulting Fatigue Life Enhancement and Residual Stresses in Al 2024 T3 alloy—An Experimental Study, Eng. Fail. Anal., 2010, 17(2), p 361–368.

    Article  CAS  Google Scholar 

  2. T.N. Chakherlou, M. Shakouri, A.B. Aghdam, and A. Akbari, Effect of Cold Expansion on the Fatigue Life of Al 2024–T3 in Double Shear Lap Joints: Experimental and Numerical Investigations, Mater. Des., 2012, 33, p 185–196.

    Article  CAS  Google Scholar 

  3. R. Wang, D. Li, D. Hu, F. Meng, H. Liu, and Q. Ma, A Combined Critical Distance and Highly-Stressed-Volume Model to Evaluate the Statistical Size Effect of the Stress Concentrator on Low Cycle Fatigue of TA19 Plate, Int. J. Fatigue, 2017, 95, p 8–17.

    Article  CAS  Google Scholar 

  4. Y. Fu, E. Ge, H. Su, J. Xu, and R. Li, Cold Expansion Technology of Connection Holes in Aircraft Structures: A Review and Prospect, Chin. J. Aeronaut., 2015, 28(4), p 961–973.

    Article  Google Scholar 

  5. S. Anil Kumar and N.C. Mahendra Babu, Influence of Induced Residual Stresses on Fatigue Performance of Cold Expanded Fastener Holes, Mater. Today: Proc., 2017, 4(2, Part A), p 2397–2402.

    Google Scholar 

  6. W. Shizhen, L. Cuiyun, W. Ruolin, and M. Chaoli, Effect of Cold Expansion on High Cycle Fatigue of 7A85 Aluminum Alloy Straight Lugs, Rare Metal Mater. Eng., 2015, 44(10), p 2358–2362.

    Article  Google Scholar 

  7. X. Li, Y. Zhang, W. Li, S. Zhou, R. Sun, C. Li, P. Wang, and T. Sakai, Very High Cycle Fatigue of a Nickel-Based Superalloy at Room and Elevated Temperatures: Interior Failure Behavior and life Prediction, Int. J. Fatigue, 2021, 151, 106349.

    Article  CAS  Google Scholar 

  8. S. Zhang, X.-L. Li, J.-F. Zhang, L. Zhang, M.-L. Zhu, and F.-Z. Xuan, High Cycle Fatigue Behavior of Inertia Friction Welded Joint of FGH96 Alloy at High Temperature, Int. J. Fatigue, 2023, 176, 107870.

    Article  CAS  Google Scholar 

  9. Y. Chang, X. Pan, L. Zheng, and Y. Hong, Microstructure Refinement and Grain Size Distribution in Crack Initiation Region of Very-High-Cycle Fatigue Regime for High-Strength Alloys, Int. J. Fatigue, 2020, 134, 105473.

    Article  CAS  Google Scholar 

  10. S. Su, L. Wang, R. Song, Y. Wang, J. Li, and C. Chen, Gradient Microstructure Evolution and Hardening Mechanism of Carburized Steel under Novel Heat Treatment, Mater. Lett., 2020, 280, 128486.

    Article  CAS  Google Scholar 

  11. J. Yang, L. Xu, H. Gao, X. Li, H. Pan, B. Shu, T. Itoh, Y. Zhu, and X. Zhu, Effect of Global Constraint on the Mechanical Behavior of Gradient Materials, Mater. Sci. Eng., A, 2021, 826, 141963.

    Article  CAS  Google Scholar 

  12. Z. Cheng, H. Zhou, L. Qiuhong, H. Gao, and Lu. Lei, Extra Strengthening and Work Hardening in Gradient Nanotwinned Metals, Science, 2018, 362(6414), p eaau1925. https://doi.org/10.1126/science.aau1925

    Article  CAS  Google Scholar 

  13. Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, and Y. Li, Mechanical Properties and Optimal Grain Size distribution Profile of Gradient Grained Nickel, Acta Mater., 2018, 153, p 279–289.

    Article  CAS  Google Scholar 

  14. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti–6Al–4V via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16.

    Article  CAS  Google Scholar 

  15. J. Liu, X.J. Shao, Y.S. Liu, and Z.F. Yue, Effect of Cold Expansion on Fatigue Performance of Open Holes, Mater. Sci. Eng., A, 2008, 477(1), p 271–276.

    Article  Google Scholar 

  16. K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52(14), p 4101–4110.

    Article  CAS  Google Scholar 

  17. X. Cao, P. Zhang, S. Liu, X.-L. Lei, R.-Z. Wang, X.-C. Zhang, and S.-T. Tu, A Novel Hole Cold-Expansion Method and its Effect on Surface Integrity of Nickel-Based Superalloy, J. Mater. Sci. Technol., 2020, 59, p 129–137.

    Article  CAS  Google Scholar 

  18. J.T. Maximov, G.V. Duncheva, and N. Ganev, Enhancement of Fatigue Life of Net Section in Fitted Bolt Connections, J. Constr. Steel Res., 2012, 74, p 37–48.

    Article  Google Scholar 

  19. A. Leon, Benefits of Split Mandrel Coldworking, Int. J. Fatigue, 1998, 20(1), p 1–8.

    Article  CAS  Google Scholar 

  20. E. Abdollahi and T.N. Chakherlou, Numerical and Experimental Study of Ratcheting in Cold Expanded Plate of Al-Alloy 2024–T3 in Double Shear Lap Joints, Fatigue Fract. Eng. Mater. Struct., 2018, 41(1), p 41–56.

    Article  CAS  Google Scholar 

  21. X. Yuan, Z.F. Yue, S.F. Wen, L. Li, and T. Feng, Numerical and Experimental Investigation of the Cold Expansion Process with Split Sleeve in Titanium Alloy TC4, Int. J. Fatigue, 2015, 77, p 78–85.

    Article  CAS  Google Scholar 

  22. D. Curto-Cárdenas, J. Calaf-Chica, P.M. Bravo Díez, M. Preciado Calzada, and M.-J. Garcia-Tarrago, Cold Expansion Process with Multiple Balls—Numerical Simulation and Comparison with Single Ball and Tapered Mandrels, Materialsed, 2020, 13, p 5536.

    Article  Google Scholar 

  23. L. Reid, Hole Cold Expansion the Fatigue Mitigation Game Changer of the Past 50 Years, Adv. Mater. Res., 2014, 891–892, p 679–684.

    Article  Google Scholar 

  24. Z. Semari, A. Aid, A. Benhamena, A. Amrouche, M. Benguediab, A. Sadok, and N. Benseddiq, Effect of Residual Stresses Induced by cold Expansion on the Crack Growth in 6082 Aluminum Alloy, Eng. Fract. Mech., 2013, 99, p 159–168.

    Article  Google Scholar 

  25. X. Liu, H. Cui, S. Zhang, H. Liu, G. Liu, and S. Li, Experimental and Numerical Investigations on Fatigue Behavior of Aluminum Alloy 7050–T7451 Single Lap four-Bolted Joints, J. Mater. Sci. Technol., 2018, 34(7), p 1205–1213.

    Article  Google Scholar 

  26. J.J. Warner, P.N. Clark, and D.W. Hoeppner, Cold Expansion Effects on Cracked Fastener Holes under Constant Amplitude and Spectrum Loading in the 2024–T351 Aluminum Alloy, Int. J. Fatigue, 2014, 68, p 209–216.

    Article  CAS  Google Scholar 

  27. P.M.S.T. de Castro, P.F.P. de Matos, P.M.G.P. Moreira, and L.F.M. da Silva, An Overview on Fatigue Analysis of Aeronautical Structural Details: Open Hole, Single Rivet Lap-Joint, and Lap-Joint Panel, Mater. Sci. Eng., A, 2007, 468–470, p 144–157.

    Article  Google Scholar 

  28. M.E. Karabin, F. Barlat, and R.W. Schultz, Numerical and Experimental Study of the Cold Expansion Process in 7085 Plate Using a Modified Split Sleeve, J. Mater. Process. Technol., 2007, 189(1), p 45–57.

    Article  CAS  Google Scholar 

  29. W.Z. Yan, X.S. Wang, H.S. Gao, and Z.F. Yue, Effect of Split Sleeve cold Expansion on Cracking Behaviors of Titanium alloy TC4 Holes, Eng. Fract. Mech., 2012, 88, p 79–89.

    Article  Google Scholar 

  30. A. Amrouche, G. Mesmacque, S. Garcia, and A. Talha, Cold Expansion Effect on the Initiation and the Propagation of the Fatigue crack, Int. J. Fatigue, 2003, 25(9), p 949–954.

    Article  Google Scholar 

  31. T.N. Chakherlou and J. Vogwell, The Effect of cold Expansion on Improving the Fatigue Life of Fastener Holes, Eng. Fail. Anal., 2003, 10(1), p 13–24.

    Article  Google Scholar 

  32. N.C. Mahendra Babu, T. Jagadish, K. Ramachandra, and S.N. Sridhara, A Simplified 3-D Finite Element Simulation of Cold Expansion of a Circular Hole to Capture Through Thickness Variation of Residual Stresses, Eng. Fail. Anal., 2008, 15(4), p 339–348.

    Article  Google Scholar 

  33. V. Nigrelli and S. Pasta, Finite-Element Simulation of Residual Stress Induced by Split-Sleeve Cold-Expansion Process of Holes, J. Mater. Process. Technol., 2008, 205(1), p 290–296.

    Article  Google Scholar 

  34. L. Yongshou, S. Xiaojun, L. Jun, and Y. Zhufeng, Finite Element Method and Experimental Investigation on the Residual Stress fields and Fatigue Performance of Cold Expansion Hole, Mater. Des., 2010, 31(3), p 1208–1215.

    Article  Google Scholar 

  35. S. Ismonov, S.R. Daniewicz, J.C. Newman Jr., M.R. Hill, and M.R. Urban, Urban Three Dimensional Finite Element Analysis of a Split-Sleeve Cold Expansion Process, J. Eng. Mater. Technol., 2009 https://doi.org/10.1115/1.3120392

    Article  Google Scholar 

  36. H. Liu, D. Hu, R. Wang, X. Wang, S. Jin, and Y. Gu, Experimental and Numerical Investigations on the Influence of Cold Expansion on Low Cycle Fatigue life of Bolt Holes in Aeroengine Superalloy Disk at Elevated Temperature, Int. J. Fatigue, 2020, 132, 105390.

    Article  CAS  Google Scholar 

  37. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu, Review on Superior Strength and Enhanced Ductility of Metallic Nanomaterials, Prog. Mater Sci., 2018, 94, p 462–540.

    Article  CAS  Google Scholar 

  38. C. Zhang, G. Song, Y. Xin, W. Zhu, B. Guan, D. Liang, and X. Zeng, Microstructure Characterization of Gradient Structured Surface Layer in Pure Zirconium, Mater. Charact., 2021, 173, 110924.

    Article  CAS  Google Scholar 

  39. X. Xu, D. Liu, X. Zhang, C. Liu, D. Liu, and W. Zhang, Influence of Ultrasonic Rolling on Surface Integrity and Corrosion Fatigue Behavior of 7B50-T7751 Aluminum Alloy, Int. J. Fatigue, 2019, 125, p 237–248.

    Article  CAS  Google Scholar 

  40. G. Chen, T. Chu, Y. Cui, Y. Wu, X. Liu, and Q. Lin, Effect of Surface Nanocrystallization on High-Cycle Fatigue Behavior of Ti–2Al–2.5Zr Alloy Tube, Int. J. Fatigue, 2022, 158, p 106735.

    Article  CAS  Google Scholar 

  41. L. Tan, C. Yao, D. Zhang, J. Ren, Z. Zhou, and J. Zhang, Evolution of Surface Integrity and Fatigue Properties After Milling, Polishing, and Shot Peening of TC17 Alloy Blades, Int. J. Fatigue, 2020, 136, 105630.

    Article  CAS  Google Scholar 

  42. M.D. Sangid, G.J. Pataky, H. Sehitoglu, R.G. Rateick, T. Niendorf, and H.J. Maier, Superior Fatigue Crack Growth Resistance, Irreversibility, and Fatigue Crack Growth–Microstructure Relationship of Nanocrystalline Alloys, Acta Mater., 2011, 59(19), p 7340–7355.

    Article  CAS  Google Scholar 

  43. C.S. Pande and K.P. Cooper, Nanomechanics of Hall–Petch Relationship in Nanocrystalline Materials, Prog. Mater Sci., 2009, 54(6), p 689–706.

    Article  CAS  Google Scholar 

  44. S.N. Naik and S.M. Walley, The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals, J. Mater. Sci., 2020, 55(7), p 2661–2681.

    Article  CAS  Google Scholar 

  45. Y.L. Wang, Y.L. Zhu, S. Hou, H.X. Sun, and Y. Zhou, Investigation on Fatigue Performance of Cold Expansion Holes of 6061–T6 Aluminum Alloy, Int. J. Fatigue, 2017, 95, p 216–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingbing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, B., Zheng, Y. et al. Effects of Stress Amplitude and Cold Expansion Strengthening on the Fatigue Property of TC4 Titanium Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09027-5

Keywords

Navigation