Skip to main content
Log in

Safety Risk Analysis and Accidents Modeling of a Major Gasoline Release in Petrochemical Plant

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2020

This article has been updated

Abstract

The purpose of this paper is to analyze risk of accidental gasoline release in the storage tank of gasoline 59-TK-158 situated in complex GL1/K Skikda using quantitative risk assessment based on HAZOP and bow tie to identify and quantify the sources of the unwanted event. Afterward, we identified the areas that are exposed to different industrial accidental effects such as (thermal, flammable and overpressure), using the software Phast as a tool for simulation. The simulation results show the distances of the affected area, to understand the risk consequences related to the affected area of each scenario. Based on this simulation, using the societal risk curves FN to assess the accidental risk inevitably affects people in the surrounding area. This explicitly denotes the relation between the frequency of occurrence and the number of fatalities generated by this accident on a two-dimensional diagram. It aims to find which scenario that is acceptable and which needs more improvement to lower the consequences related to it in a matter of safety. This work was conducted for the first time in GNL Skikda, specifically in a storage tank using a combination between HAZID, bow tie and FN curve. The intention of this combination is to explain deferent industrial phenomenal specially to avoid disasters such as what happened in 2004 and 2005 in the industrial area of Skikda. That is what makes the approach practically more helpful in the use of safety barriers and industrial decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 14 February 2020

    In the original version of the article, Mounira Rouainia’s last name was spelled wrong. It is correct as shown here. The original article has been updated.

References

  1. J.L. Fuentes-Bargues, M.C. González-Cruz, C. González-Gaya, M.P. Baixauli-Pérez, Risk analysis of a fuel storage terminal using HAZOP and FTA. Int. J. Environ. Res. Public Health 14(7), 705 (2017). https://doi.org/10.3390/ijerph14070705

    Article  CAS  Google Scholar 

  2. S.M. Tauseef, T. Abbasi, S.A. Abbasi, Risks of fire and explosion associated with the increasing use of liquefied petroleum gas. J. Fail. Anal. Prev. 10(4), 322–333 (2010). https://doi.org/10.1007/s11668-010-9360-9

    Article  Google Scholar 

  3. O.N. Aneziris, I.A. Papazoglou, M. Konstantinidou, Z. Nivolianitou, Integrated risk assessment for LNG terminals. J. Loss Prev. Process Ind. 28, 23–35 (2014). https://doi.org/10.1016/j.jlp.2013.07.014

    Article  Google Scholar 

  4. L. Ait Ouffroukh, R. Chaib, V. Ion, L. Khochmane, Analysis of risk and the strengthening of the safety technical barriers: application of Skikda (Algeria) oil refining complex. World Eng. 15(1), 99–109 (2018). https://doi.org/10.1108/wje-02-2017-0031

    Article  Google Scholar 

  5. J. Tixier, G. Dusserre, O. Salvi, D. Gaston, Review of 62 risk analysis methodologies of industrial plants. J. Loss Prev. Process Ind. 15(4), 291–303 (2002). https://doi.org/10.1016/s0950-4230(02)00008-6

    Article  Google Scholar 

  6. E. Planas, J. Arnaldos, R.M. Darbra, M. Muñoz, E. Pastor, J.A. Vílchez, Historical evolution of process safety and major-accident hazards prevention in Spain. Contribution of the pioneer Joaquim Casal. J. Loss Prev. Process Ind. 28, 109–117 (2014). https://doi.org/10.1016/j.jlp.2013.04.005

    Article  Google Scholar 

  7. M.C. Embarek, E.A. Hadjadj, Study of methodologies for risk assessment in operational system safety. J. Fail. Anal. Prev. 10(6), 540–544 (2010). https://doi.org/10.1007/s11668-010-9397-9

    Article  Google Scholar 

  8. H.J. Pasman, S. Jung, K. Prem, W.J. Rogers, X. Yang, Is risk analysis a useful tool for improving process safety? J. Loss Prev. Process Ind. 22(6), 769–777 (2009). https://doi.org/10.1016/j.jlp.2009.08.001

    Article  CAS  Google Scholar 

  9. H. Zerrouki, A. Tamrabet, Safety and risk analysis of an operational heater using Bayesian network. J. Fail. Anal. Prev. 15(5), 657–661 (2015). https://doi.org/10.1007/s11668-015-9986-8

    Article  Google Scholar 

  10. M. Yazdi, Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int. J. Interact Des. Manuf. (2018). https://doi.org/10.1007/s12008-018-0496-2

    Article  Google Scholar 

  11. M. Yazdi, E. Zarei, Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18(2), 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9

    Article  Google Scholar 

  12. M. Yazdi, Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17(4), 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4

    Article  Google Scholar 

  13. M. Yazdi, The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17(2), 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x

    Article  Google Scholar 

  14. H. Zerrouki, H. Smadi, Bayesian belief network used in the chemical and process industry: a review and application. J. Fail. Anal. Prev. 17(1), 159–165 (2017). https://doi.org/10.1007/s11668-016-0231-x

    Article  Google Scholar 

  15. K. Hafida, C. Rachid, B. Ahmed, Hazard identification and risk analysis for a reinforced concrete rolling mill. World Eng. 14(1), 1–6 (2017). https://doi.org/10.1108/wje-11-2016-0123

    Article  Google Scholar 

  16. P. Moshashaei, S.S. Alizadeh, M.A. Jafarabadi, L. Khazini, Prioritizing the causes of fire and explosion in the external floating roof tanks. J. Fail. Anal. Prev. 18(6), 1587–1600 (2018). https://doi.org/10.1007/s11668-018-0556-8

    Article  Google Scholar 

  17. H. Persson, A. Lönnermark, Tank fires: review of fire incidents 1951–2003: Brandforsk project 513–021 (Sveriges provnings- och forskningsinstitut (SP), Borås, 2004)

    Google Scholar 

  18. F.I. Khan, S.A. Abbasi, Accident hazard index: a multi-attribute method for process industry hazard rating. Process Saf. Environ. Prot. 75(4), 217–224 (1997). https://doi.org/10.1205/095758297529093

    Article  CAS  Google Scholar 

  19. F.I. Khan, S.A. Abbasi, Major accidents in process industries and an analysis of causes and consequences. J. Loss Prev. Process Ind. 12(5), 361–378 (1999). https://doi.org/10.1016/s0950-4230(98)00062-x

    Article  Google Scholar 

  20. F.I. Khan, S.A. Abbasi, The world’s worst industrial accident of the 1990s what happened and what might have been: a quantitative study. Process Saf. Prog. 18(3), 135–145 (1999). https://doi.org/10.1002/prs.680180304

    Article  CAS  Google Scholar 

  21. Y. Lizhong, Z. Xiaodong, D. Zhihua, F. Weicheng, W. Qing’an, Fire situation and fire characteristic analysis based on fire statistics of China. Fire Saf. J. 37(8), 785–802 (2002)

    Article  Google Scholar 

  22. P. Hudson, Applying the lessons of high risk industries to health care. BMJ Qual. Saf. 12(suppl 1), i7–i12 (2003). https://doi.org/10.1136/qhc.12.suppl_1.i7

    Article  Google Scholar 

  23. H. Ohtani, M. Kobayashi, Statistical analysis of dangerous goods accidents in Japan. Saf. Sci. 43(5–6), 287–297 (2005). https://doi.org/10.1016/j.ssci.2005.06.003

    Article  Google Scholar 

  24. T. Liu, M. Zhong, J. Xing, Industrial accidents: challenges for China’s economic and social development. Saf. Sci. 43(8), 503–522 (2005). https://doi.org/10.1016/j.ssci.2005.08.012

    Article  Google Scholar 

  25. Z. Nivolianitou, M. Konstandinidou, C. Michalis, Statistical analysis of major accidents in petrochemical industry notified to the major accident reporting system (MARS). J. Hazard. Mater. 137(1), 1–7 (2006). https://doi.org/10.1016/j.jhazmat.2004.12.042

    Article  CAS  Google Scholar 

  26. M. Konstandinidou, Z. Nivolianitou, N. Markatos, C. Kiranoudis, Statistical analysis of incidents reported in the Greek Petrochemical Industry for the period 1997–2003. J. Hazard. Mater. 135(1), 1–9 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.059

    Article  CAS  Google Scholar 

  27. F.K. Sweis, Fires and related incidents in Jordan (1996–2004). Fire Saf. J. 41(5), 370–376 (2006). https://doi.org/10.1016/j.firesaf.2006.02.002

    Article  Google Scholar 

  28. J.I. Chang, C.-C. Lin, A study of storage tank accidents. J. Loss Prev. Process Ind. 19(1), 51–59 (2006). https://doi.org/10.1016/j.jlp.2005.05.015

    Article  Google Scholar 

  29. M. Kalantarnia, F. Khan, K. Hawboldt, Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Process Saf. Environ. Prot. 88(3), 191–199 (2010). https://doi.org/10.1016/j.psep.2010.01.004

    Article  CAS  Google Scholar 

  30. S.M. Tauseef, T. Abbasi, S.A. Abbasi, Development of a new chemical process-industry accident database to assist in past accident analysis. J. Loss Prev. Process Ind. 24(4), 426–431 (2011). https://doi.org/10.1016/j.jlp.2011.03.005

    Article  CAS  Google Scholar 

  31. H.-D. Zhang, X.-P. Zheng, Characteristics of hazardous chemical accidents in China: a statistical investigation. J. Loss Prev. Process Ind. 25(4), 686–693 (2012). https://doi.org/10.1016/j.jlp.2012.03.001

    Article  CAS  Google Scholar 

  32. B. Fabiano, F. Currò, From a survey on accidents in the downstream oil industry to the development of a detailed near-miss reporting system. Process Saf. Environ. Prot. 90(5), 357–367 (2012). https://doi.org/10.1016/j.psep.2012.06.005

    Article  CAS  Google Scholar 

  33. C.-W. Cheng, H.-Q. Yao, T.-C. Wu, Applying data mining techniques to analyze the causes of major occupational accidents in the petrochemical industry. J. Loss Prev. Process Ind. 26(6), 1269–1278 (2013). https://doi.org/10.1016/j.jlp.2013.07.002

    Article  CAS  Google Scholar 

  34. R.D. Calvo Olivares, S.S. Rivera, J.E. Núñez Mc Leod, Database for accidents and incidents in the biodiesel industry. J. Loss Prev. Process Ind. 29, 245–261 (2014). https://doi.org/10.1016/j.jlp.2014.03.010

    Article  Google Scholar 

  35. A. Ronza, S. Carol, V. Espejo, J.A. Vílchez, J. Arnaldos, A quantitative risk analysis approach to port hydrocarbon logistics. J. Hazard. Mater. 128(1), 10–24 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.032

    Article  CAS  Google Scholar 

  36. OREDA: offshore reliability data handbook. OREDA Participants: Distributed by Der Norske Veritas, Høvik, Norway (2002)

  37. GRIF-Workshop|Graphical interface for reliability forecasting. http://grif-workshop.fr/

  38. Groupe de Travail Dépôt de Liquides Inflammables- GTDLI, Modélisation des effets thermiques dus à un feu de nappe d’hydrocarbures liquides, version 01, Septembre 2006

  39. DNVGL.com—Safer Smarter Greener. https://www.dnvgl.com/index.html. https://www.dnvgl.com/#Software. Accessed 16 June 2019

  40. Skikda, Algeria: Climate, global warming, and daylight charts and data. https://www.climate-charts.com/Locations/a/AL60355.html. Accessed 16 June 2019

  41. Skikda climate: average temperature, weather by month, Skikda weather averages—Climate-Data.org. https://en.climate-data.org/africa/algeria/skikda/skikda-3695/. Accessed 16 June 2019

  42. Windfinder.com: Windfinder.com - Wind and weather statistic Skikda Aéroport. https://www.windfinder.com/windstatistics/skikda_aeroport. Accessed 16 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderraouf Bouafia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Mounira Rouainia’s last name was spelled wrong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouafia, A., Bougofa, M., Rouainia, M. et al. Safety Risk Analysis and Accidents Modeling of a Major Gasoline Release in Petrochemical Plant. J Fail. Anal. and Preven. 20, 358–369 (2020). https://doi.org/10.1007/s11668-020-00826-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00826-9

Keywords

Navigation