Skip to main content
Log in

Hybrid Probabilistic Risk Assessment Using Fuzzy FTA and Fuzzy AHP in a Process Industry

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

There are many available techniques which are widely used for failure probability analysis. Fault tree analysis (FTA) is a well-known method to identify the basic events (BEs) to reach top event. However, the FTA method in real circumstances is limited because of the many unknown and the vagueness of the situations. Thus, fuzzy set theory with respect to subjective expert opinion is employed to cope with the uncertain knowledge of BEs including randomness, ignorance, and shortages of data. In addition, to gain this purpose, much subjectivity may appear; as an example, the main one is the expert weighting. This study highlights the utility of fuzzy set theory and analytic hierarchy process to failure probability analysis in a case study. A chemical process plant has been selected to illustrate the application of proposed model with a comparison of the results with conventional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Acosta, B.M. Forrest, The spread of marine non-indigenous species via recreational boating: a conceptual model for risk assessment based on fault tree analysis. Ecol. Modell. 220, 1586–1598 (2009). doi:10.1016/j.ecolmodel.2009.03.026

    Article  Google Scholar 

  2. K. Alkhaledi, S. Alrushaid, J. Almansouri, A. Alrashed, Using fault tree analysis in the Al-Ahmadi town gas leak incidents. Saf. Sci. 79, 184–192 (2015). doi:10.1016/j.ssci.2015.05.015

    Article  Google Scholar 

  3. J.J. Buckley, Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). doi:10.1016/0165-0114(85)90090-9

    Article  Google Scholar 

  4. H.K. Chan, X. Wang, Fuzzy extent analysis for food risk assessment, Fuzzy Hierarchical Model for Risk Assessment (Springer, London, 2013), pp. 89–114. doi:10.1007/978-1-4471-5043-5_6

    Chapter  Google Scholar 

  5. D.-Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). doi:10.1016/0377-2217(95)00300-2

    Article  Google Scholar 

  6. C.-Y. Cheng, S.-F. Li, S.-J. Chu, C.-Y. Yeh, R.J. Simmons, Application of fault tree analysis to assess inventory risk: a practical case from aerospace manufacturing. Int. J. Prod. Res. 51, 6499–6514 (2013). doi:10.1080/00207543.2013.825744

    Article  Google Scholar 

  7. M. Gul, A.F. Guneri, A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. J. Loss Prev. Process Ind. 40, 89–100 (2016). doi:10.1016/j.jlp.2015.11.023

    Article  Google Scholar 

  8. H.-M. Hsu, C.-T. Chen, Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 79, 279–285 (1996). doi:10.1016/0165-0114(95)00185-9

    Article  Google Scholar 

  9. C.-L. Hwang, K. Yoon, Multiple Attribute Decision Making (Springer, New York, 1981). doi:10.1007/978-3-642-48318-9

    Book  Google Scholar 

  10. A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: theory and Applications (Van Nostrand Reinhold Co., New York, 1985)

    Google Scholar 

  11. S.M. Lavasani, N. Ramzali, F. Sabzalipour, E. Akyuz, Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108, 729–737 (2015). doi:10.1016/j.oceaneng.2015.09.008

    Article  Google Scholar 

  12. S.M. Lavasani, A. Zendegani, M. Celik, An extension to Fuzzy Fault Tree Analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015). doi:10.1016/j.psep.2014.05.001

    Article  Google Scholar 

  13. A. Mentes, I.H. Helvacioglu, An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng. 38, 285–294 (2011). doi:10.1016/j.oceaneng.2010.11.003

    Article  Google Scholar 

  14. M.R. Miri Lavasani, J. Wang, Z. Yang, J. Finlay, Application of fuzzy fault tree analysis on oil and gas offshore pipelines. Int. J. Mar. Sci. Eng 1, 29–42 (2011)

    Google Scholar 

  15. M. Nadjafi, M.A. Farsi, H. Jabbari, Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate. Int. J. Syst. Assur. Eng. Manag. (2016). doi:10.1007/s13198-016-0563-7

    Google Scholar 

  16. M. Omidvari, S.M.R. Lavasani, S. Mirza, Presenting of failure probability assessment pattern by FTA in Fuzzy logic (case study: distillation tower unit of oil refinery process). J. Chem. Heal. Saf. 21, 14–22 (2014). doi:10.1016/j.jchas.2014.06.003

    Article  Google Scholar 

  17. T. Onisawa, Subjective analysis of system reliability and its analyzer. Fuzzy Sets Syst. 83, 249–269 (1996). doi:10.1016/0165-0114(95)00381-9

    Article  Google Scholar 

  18. T. Onisawa, An application of fuzzy concepts to modelling of reliability analysis. Fuzzy Sets Syst. 37, 267–286 (1990). doi:10.1016/0165-0114(90)90026-3

    Article  Google Scholar 

  19. T. Onisawa, A representation of human reliability using fuzzy concepts. Inf. Sci. (Ny) 45, 153–173 (1988). doi:10.1016/0020-0255(88)90038-2

    Article  Google Scholar 

  20. T. Onisawa, An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets Syst. 27, 87–103 (1988). doi:10.1016/0165-0114(88)90140-6

    Article  Google Scholar 

  21. T. Onisawa, K.B. Misra, Use of fuzzy sets theory: (part-ii: applications) Chap. 14, in Fundamental Studies in Engineering, (1993), pp. 551–586. doi:10.1016/B978-0-444-81660-3.50024-1

  22. N. Ramzali, M.R.M. Lavasani, J. Ghodousi, Safety barriers analysis of offshore drilling system by employing Fuzzy event tree analysis. Saf. Sci. 78, 49–59 (2015). doi:10.1016/j.ssci.2015.04.004

    Article  Google Scholar 

  23. E. Ruijters, M. Stoelinga, Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). doi:10.1016/j.cosrev.2015.03.001

    Article  Google Scholar 

  24. T. Runkler, M. Glesner, A set of axioms for defuzzification strategies towards a theory of rational defuzzification operators. Proc. Second IEEE Int. Conf. Fuzzy Set Syst. pp. 1161–1166 (1993)

  25. M. Sugeno, H.T. Nguyen, N.R. Prasad, Fuzzy Modeling and Control: Selected Works of M. Sugeno (CRC Press, Baco Raton, 1999)

    Google Scholar 

  26. D. Wang, P. Zhang, L. Chen, Fuzzy fault tree analysis for fire and explosion of crude oil tanks. J. Loss Prev. Process Ind. 26, 1390–1398 (2013). doi:10.1016/j.jlp.2013.08.022

    Article  Google Scholar 

  27. J. Wang, F. Wang, S. Chen, J. Wang, L. Hu, Y. Yin, Y. Wu, Fault-tree-based instantaneous risk computing core in nuclear power plant risk monitor. Ann. Nucl. Energy 95, 35–41 (2016). doi:10.1016/j.anucene.2016.02.024

    Article  Google Scholar 

  28. Z.M. Xue, Research on FTA of fire and explosion in the crude oil gathering-transport combination station. Procedia Eng. 11, 575–582 (2011). doi:10.1016/j.proeng.2011.04.698

    Article  Google Scholar 

  29. M. Yazdi, The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). doi:10.1007/s11668-017-0247-x

    Article  Google Scholar 

  30. M. Yazdi, S. Daneshvar, H. Setareh, An extension to Fuzzy Developed Failure Mode and Effects Analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). doi:10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  31. M. Yazdi, F. Nikfar, M. Nasrabadi, Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. (2017). doi:10.1007/s13198-017-0583-y

    Google Scholar 

  32. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965). doi:10.1016/S0019-9958(65)90241-X

    Google Scholar 

  33. R. Zhao, R. Govind, Defuzzification of fuzzy intervals. Fuzzy Sets Syst. 43, 45–55 (1991). doi:10.1016/0165-0114(91)90020-Q

    Article  Google Scholar 

Download references

Acknowledgments

The author sincerely thank the editor and the anonymous reviewers for their insights and helpful comments and suggestions which are very helpful in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M. Hybrid Probabilistic Risk Assessment Using Fuzzy FTA and Fuzzy AHP in a Process Industry. J Fail. Anal. and Preven. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0305-4

Keywords

Navigation