Skip to main content
Log in

Low-Cycle Fatigue Behavior of Thin-Sheet Extruded Aluminum Alloy

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this work, we investigate a novel testing method for fatigue testing of a thin sheet under fully reversed conditions. Specifically, the fatigue behavior of thin-plate AA6082-T6 was characterized by laminating multiple thin gage specimens together to form a thicker specimen to prevent buckling under low-cycle fatigue testing. In this unique technique, ASTM E606 fatigue specimens were bonded together with a structural adhesive in double and triple laminates, and fatigue behavior was compared against monolithic control specimens. To quantify the fatigue behavior of the laminated AA6082, strain-controlled experiments were conducted, where the fatigue life experimental results exhibited comparable fatigue performance to the published literature. Postmortem analysis of the laminated AA6082 revealed a similar fatigue nucleation and crack growth damage mechanisms compared to the monolithic fatigue specimens. Lastly, a microstructure-sensitive fatigue life model was utilized to elucidate structure–property fatigue mechanism relations of the monolithic, double-, and triple-laminate specimens. The fatigue behavior of laminated specimens exhibits good correlation to wrought AA6082-T6 mechanical properties and thus suggests that laminating sheets together can be used to quantify fully reversed fatigue behavior of thin sheets that would otherwise buckle under compression loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Venukumar, S. Muthukumaran, S.G. Yalagi, S.V. Kailas, Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets. Int. J. Fatigue 61, 93 (2014)

    Article  CAS  Google Scholar 

  2. Y. Takahashi, T. Shikama, S. Yoshihara, T. Aiura, H. Noguchi, Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Mater. 60, 2554 (2012)

    Article  CAS  Google Scholar 

  3. H.Z. Ding, H. Biermann, O. Hartmann, A low cycle fatigue model of a short-fibre reinforced 6061 aluminium alloy metal matrix composite. Compos. Sci. Technol. 62, 2189 (2002)

    Article  CAS  Google Scholar 

  4. M. Tiryakioǧlu, P.D. Eason, J. Campbell, Fatigue life of ablation-cast 6061-T6 components. Mater. Sci. Eng. A 559, 447 (2013)

    Article  CAS  Google Scholar 

  5. L. Susmel, N. Petrone, Modeling of path-dependent multi-axial fatigue damage in aluminum alloys. Eur. Struct. Integr. Soc. 31, 83 (2003)

    Article  CAS  Google Scholar 

  6. A. Karolczuk, M. Kurek, T. Łagoda, Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion. J. Theor. Appl. Mech. 53, 421 (2015)

    Article  Google Scholar 

  7. M. Maj, K. Pietrzak, Characteristics of non-ferrous metal alloys as determined by low-cycle fatigue test under variable loads. Arch. Found. Eng. 14, 71 (2014)

    Article  Google Scholar 

  8. N. Kumar, S. Goel, R. Jayaganthan, G.M. Owolabi, The influence of metallurgical factors on low cycle fatigue behavior of ultra-fine grained 6082 Al alloy. Int. J. Fatigue 110, 130 (2018)

    Article  CAS  Google Scholar 

  9. A.S. Ribeiro, A.M.P. De Jesus, Study of strengthening solutions for glued-laminated wood beams of maritime pine wood. Constr. Build. Mater. 23, 2738 (2009)

    Article  Google Scholar 

  10. L.P. Borrego, L.M. Abreu, J.M. Costa, J.M. Ferreira, Analysis of low cycle fatigue in AlMgSi aluminium alloys. Eng. Fail. Anal. 11, 715 (2004)

    Article  CAS  Google Scholar 

  11. K. Molski, G. Glinka, A method of elasticplastic stress and strain calculation at a notch root. Mater. Sci. Eng. 50, 93 (1981)

    Article  CAS  Google Scholar 

  12. H. Neuberm, Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J. Appl. Mech. 28, 544–550 (1961)

    Article  Google Scholar 

  13. R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in Engineering (Wiley, Berlin, 2000)

    Google Scholar 

  14. G.P. Zhang, C.A. Volkert, R. Schwaiger, R. Mönig, O. Kraft, Fatigue and thermal fatigue damage analysis of thin metal films. Microelectron. Reliab. 47, 2007 (2007)

    Article  CAS  Google Scholar 

  15. L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer, J.W. Jones, Low-cycle fatigue behavior of die-cast Mg alloys AZ91 and AM60. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 2260 (2012)

    Article  CAS  Google Scholar 

  16. R. Kaufman, T. Lam, A. Thompson, T. Topper, Fatigue testing of sheet metals subject to uniaxial tension-compression. SAE Tech. Pap. (2001)

  17. Y. Birol, E. Gokcil, M.A. Guvenc, S. Akdi, Processing of high strength EN AW 6082 forgings without a solution heat treatment. Mater. Sci. Eng. A 674, 25 (2016)

    Article  CAS  Google Scholar 

  18. N.A. Alang, N.A. Razak, A.K. Miskam, Effect of surface roughness on fatigue life of notched carbon steel. Int. J. Eng. Technol. 11, 160 (2011)

    Google Scholar 

  19. D.L. Mcdowell, Multiaxial small fatigue crack growth in metals. Int. J. Fatigue 19, 127 (1998)

    Article  Google Scholar 

  20. D.L. McDowell, An engineering model for propagation of small cracks in fatigue. Eng. Fract. Mech. 56, 357 (1997)

    Article  Google Scholar 

  21. D.L. McDowell, K. Gall, M.F. Horstemeyer, J. Fan, Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fract. Mech. 70, 49 (2003)

    Article  Google Scholar 

  22. R.R. McCullough, J.B. Jordon, A.T. Brammer, K. Manigandan, T.S. Srivatsan, P.G. Allison, T.W. Rushing, A fatigue model for discontinuous particulate-reinforced aluminum alloy composite: influence of microstructure. J. Mater. Eng. Perform. 23, 65 (2014)

    Article  CAS  Google Scholar 

  23. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, J.B. Jordon, Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng. Fract. Mech. 74, 2810 (2007)

    Article  Google Scholar 

  24. R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, L. Garcia, Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Mater. Sci. Eng. A 654, 236 (2016)

    Article  CAS  Google Scholar 

  25. Y. Xue, C.L. Burton, M.F. Horstemeyer, D.L. McDowell, J.T. Berry, Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 38, 601 (2007)

    Article  CAS  Google Scholar 

  26. R.R. McCullough, J.B. Jordon, P.G. Allison, T. Rushing, L. Garcia, Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy. Int. J. Fatigue 119, 52 (2019)

    Article  CAS  Google Scholar 

  27. A.R. Cisko, J.B. Jordon, D.Z. Avery, Z.B. McClelland, T. Liu, T.W. Rushing, L.N. Brewer, P.G. Allison, L. Garcia, Characterization of fatigue behavior of Al–Li alloy 2099. Mater. Charact. 151, 496 (2019)

    Article  CAS  Google Scholar 

  28. A. Cisko, J. Jordon, D. Avery, T. Liu, L. Brewer, P. Allison, R. Carino, Y. Hammi, T. Rushing, L. Garcia, A.R. Cisko, J.B. Jordon, D.Z. Avery, T. Liu, L.N. Brewer, P.G. Allison, R.L. Carino, Y. Hammi, T.W. Rushing, L. Garcia, Experiments and modeling of fatigue behavior of friction stir welded aluminum lithium alloy. Metals (Basel) 9, 293 (2019)

    Article  CAS  Google Scholar 

  29. M. Lugo, J.B. Jordon, J. Bernard, M. Horstemeyer, Microstructure-sensitive fatigue modeling of an extruded AM30 magnesium alloy. SAE Tech. Pap. 2013-01-0980 (2013)

  30. J.D. Bernard, J.B. Jordon, M.F. Horstemeyer, H.E. Kadiri, J. Baird, D. Lamb, A.A. Luo, Structure–property relations of cyclic damage in a wrought magnesium alloy. Scr. Mater. 63, 751 (2010)

    Article  CAS  Google Scholar 

  31. J.B. Jordon, M.F. Horstemeyer, S.R. Daniewicz, H. Badarinarayan, J. Grantham, Fatigue characterization and modeling of friction stir spot welds in magnesium AZ31 alloy. J. Eng. Mater. Technol. 132, 041008 (2010)

    Article  CAS  Google Scholar 

  32. J.B. Jordon, M.F. Horstemeyer, Microstructure-sensitive fatigue modeling of AISI 4140 steel. J. Eng. Mater. Technol. 136, 021004 (2014)

    Article  CAS  Google Scholar 

  33. L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer, J.W. Jones, Low-cycle fatigue behavior of die-cast Mg alloys AZ91 and AM60. A. Trans 43, 2260 (2012)

    CAS  Google Scholar 

  34. M. Lugo, J.B. Jordon, K.N. Solanki, L.G. Hector, J.D. Bernard, A.A. Luo, M.F. Horstemeyer, Role of different material processing methods on the fatigue behavior of an AZ31 magnesium alloy. Int. J. Fatigue 52, 131 (2013)

    Article  CAS  Google Scholar 

  35. J.B. Jordon, J.B. Gibson, M.F. Horstemeyer, Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured AZ61 magnesium alloy. Magnes. Technol. 2011, 55 (2011)

    Google Scholar 

  36. P.G. Allison, Y. Hammi, J.B. Jordon, M.F. Horstemeyer, Modelling and experimental study of fatigue of powder metal steel (FC-0205). Powder Metall. 56, 388 (2013)

    Article  CAS  Google Scholar 

  37. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, P.T. Wang, Microporosity effects on cyclic plasticity and fatigue of LENSTM-processed steel. Acta Mater. 58, 4029 (2010)

    Article  CAS  Google Scholar 

  38. B. Torries, A. Imandoust, S. Beretta, S. Shao, N. Shamsaei, Overview on microstructure-and defect-sensitive fatigue modeling of additively manufactured materials. JOM 70, 1853 (2018)

    Article  Google Scholar 

  39. D.R. Hayhurst, F.A. Leckie, McDow, The application of uncertainty quantification (UQ) and sensitivity analysis (SA) methodologies to engineering models and mechanical experiments, in Multiaxial fatigueSTP853 (1985), pp. 553–558

  40. D.W. Brown, A. Jain, S.R. Agnew, B. Clausen, Twinning and detwinning during cyclic deformation of Mg alloy AZ31B. Mater. Sci. Forum 539–543, 3407 (2007)

    Article  Google Scholar 

  41. G. Mrówka-Nowotnik, J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. J. Mater. Process. Technol. 162–163, 367 (2005)

    Article  CAS  Google Scholar 

  42. J. Bouquerel, B. Diawara, A. Dubois, M. Dubar, J.B. Vogt, D. Najjar, Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy. Mater. Des. 68, 245 (2015)

    Article  CAS  Google Scholar 

  43. A. Decroly, J.P. Petitjean, Study of the deposition of cerium oxide by conversion on to aluminium alloys. Surf. Coatings Technol. 194, 1 (2005)

    Article  CAS  Google Scholar 

  44. D.H. Lee, J.H. Park, S.W. Nam, Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater. Sci. Technol. 15, 450 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Jordon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avery, D.Z., King, W.T., Allison, P.G. et al. Low-Cycle Fatigue Behavior of Thin-Sheet Extruded Aluminum Alloy. J Fail. Anal. and Preven. 20, 95–105 (2020). https://doi.org/10.1007/s11668-020-00802-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00802-3

Keywords

Navigation