Skip to main content
Log in

A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540

    Article  Google Scholar 

  2. M. Singla, D. Dwivedi, L. Singh, and L.V. Chawla, Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite, J. Miner. Mater. Charact. Eng., 2009, 8, p 455–467

    Google Scholar 

  3. C. Velmurugan, R. Subramanian, S. Thirugnanam, and B. Anandavel, Investigation of Friction and Wear Behavior of Hybrid Aluminium Composites, Ind. Lubr. Tribol., 2012, 64, p 152–163

    Article  Google Scholar 

  4. F.A. Girot, J.M. Quenisset, and R. Naslain, Discontinuously-Reinforced Aluminum Matrix Composites, Compos. Sci. Technol., 1987, 30, p 155–184

    Article  Google Scholar 

  5. L. Ceschini, G. Minak, and A. Morri, Tensile and Fatigue Properties of the A6061/20 vol.% Al2O3p and AA7005/10 vol.% Al2O3p Composites, Compos. Sci. Technol., 2006, 66, p 333–342

    Article  Google Scholar 

  6. M. Al Mehedi, Aluminium Matrix Composites in Automotive Applications, Int. Alum. J., 2011, 87, p 55

  7. M. Hadianfard and Y. Mai, Low Cycle Fatigue Behavior of Particulate Reinforced Metal Matrix Composites, J. Mater. Sci., 2000, 35, p 1715–1723

    Article  Google Scholar 

  8. L. Ceschini, A. Morri, R. Cocomazzi, and E. Troiani, Room and High Temperature Tensile Tests on the AA6061/10vol.%Al2O3p and AA7005/20vol.%Al2O3p Composites, Mater. Sci. Eng. Technol., 2003, 34, p 370

    Google Scholar 

  9. M. Papakyriacou, H. Mayer, and E. Al, Fatigue Properties of Al2O3-Particle-Reinforced 6061 Aluminium Alloy in the High-Cycle Regime, Int. J. Fatigue, 1996, 18, p 475–481

    Article  Google Scholar 

  10. J. Leggoe, X. Hu, and M. Bush, Crack Tip Damage Development and Crack Growth Resistance in Particulate Reinforced Metal Matrix Composites, Eng. Fract. Mech., 1996, 53, p 873–895

    Article  Google Scholar 

  11. N. Chawla and K.K. Chawla, Metal Matrix Composites, 1st ed., Springer Science + Business Media, Inc., New York, 2006

  12. C. Perng, J. Hwang, and J. Doong, High Strain Rate Tensile Properties of an (Al2O3 Particles)-(Al Alloy 6061-T6) Metal Matrix Composite, J. Mater. Sci. Eng., 1993, 171, p 213–221

    Article  Google Scholar 

  13. P. Agrawal and C.T. Sun, Fracture in Metal-Ceramic Composites, Compos. Sci. Technol., 2004, 64, p 1167–1178

    Article  Google Scholar 

  14. Z. Chen and K. Tokaj, Effects of Particle Size on Fatigue Crack Initiation and Small Crack Growth in SiC Particulate-Reinforced Aluminium Alloy Composites, Mater. Lett., 2004, 58, p 2314–2321

    Article  Google Scholar 

  15. C. Perng, J. Hwang, and J. Doong, Elevated-Temperature, Low-Cycle Fatigue Behaviour of an Al2O3p/6061-T6 Aluminium Matrix Composite, Compos. Sci. Technol., 1993, 49, p 225–236

    Article  Google Scholar 

  16. S. Yadav, D. Chichil, and K. Ramesh, The Mechanical Response of a 6061-T6 A1/A12O3 Metal Matrix Composite at High Rates of Deformation, Acta Metall. et Mater., 1995, 43, p 4453–4464

    Article  Google Scholar 

  17. M. Levin and B. Karlsson, Crack Initiation and Growth During Low-Cycle Fatigue of Discontinuously Reinforced Metal-Matrix Composites, Int. J. Fatigue, 1993, 15, p 377–387

    Article  Google Scholar 

  18. E. Hochreiter, M. Panzenböck, and F. Jeglitsch, Fatigue Properties of Particle-Reinforced Metal-Matrix Composites, Int. J. Fatigue, 1993, 15, p 493–499

    Article  Google Scholar 

  19. B.G. Park, A.G. Crosky, and A.K. Hellier, Fracture toughness of microsphere Al2O3—Al particulate metal matrix composites, Compos. Part B, 2008, 39, p 1270–1279

    Article  Google Scholar 

  20. N.L. Han, Z.G. Wang, and G.D. Zhang, Effect of Reinforcement Size on the Elevated-Temperature Tensile Properties and Low-Cycle Fatigue Behavior of Particulate SiC/Al Composites, Compos. Sci. Technol., 1997, 57, p 1491–1499

    Article  Google Scholar 

  21. Z. Xia, F. Ellyin, and G. Meijer, Mechanical Behavior of Al2O3-Particle-Reinforced 6061 Aluminum Alloy Under Uniaxial and Multiaxial Cyclic Loading, Compos. Sci. Technol., 1997, 57, p 237–248

    Article  Google Scholar 

  22. Y.X. Gan Overfelt, Ruel A, Fatigue Property of Semisolid A357 Aluminum Alloy Under Different Heat Treatment Conditions. J. Mater. Sci., 2006, 41(22), p 7537–7544

    Google Scholar 

  23. T.S. Srivatsan, R. Auradkar, and A. Prakash, Cyclic Stress Response and Cyclic Fracture Behavior of Silicon Carbide Particulate Reinforced Aluminum Metal-Matrix Composite, Eng. Fract. Mech., 1991, 40(2), p 277–295

    Article  Google Scholar 

  24. T.S. Srivatsan, The Low Cycle Fatigue Behavior of an Aluminum Alloy-Ceramic Particle Composite, Int. J. Fatigue, 1992, 14(3), p 173–182

    Article  Google Scholar 

  25. T.S. Srivatsan and R. Auradkar, The Effect of Silicon Carbide Particulate on Cyclic Plastic Strain Response Characteristics and Fracture of Aluminum Alloy Composites, Int. J. Fatigue, 1992, 14(6), p 355–366

    Article  Google Scholar 

  26. T.S. Srivatsan, A. Ravindra, J.M. Panchal, and A. Prakash, The Cyclic Fatigue and Fracture Behavior of Ceramic-Particle-Reinforced Tool Steel Metal-Matrix Composite, Compos. Part B, 1993, 3(4), p 329–347

    Google Scholar 

  27. V.A. Romanova, R.R. Balokhonov, and S. Schmauder, The Influence of the Reinforcing Particle Shape and Interface Strength on the Fracture Behavior of a Metal Matrix Composite, Acta Mater., 2009, 57, p 97

    Article  Google Scholar 

  28. H.J. Choi, J.H. Shin, and D.H. Bae, Grain Size Effect on the Strengthening Behavior of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71, p 1699–1705

    Article  Google Scholar 

  29. Y. Li and K.T. Ramesh, Influence of Particle Volume Fraction, Shape, and Aspect Ratio on the Behavior of Particle-Reinforced Metal-Matrix Composites at High Rates of Strain, Acta Mater., 1998, 46, p 5633–5646

    Article  Google Scholar 

  30. L. Chingshen and F. Ellyin, Fatigue Damage and Its Localization in Particulate Metal Matrix Composites, Mater. Sci. Eng. A, 1996, 214, p 115–121

    Article  Google Scholar 

  31. B.J. Weng, S.T. Chang, and J.S. Shiau, Microfracture Mechanisms of SiC-6061 Aluminum Composite After Hipping, Scr. Metallurg. et Mater., 1992, 27, p 1127–1132

    Article  Google Scholar 

  32. D. McDowell, K. Gall, M. Horstemeyer, and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy, Eng. Fract. Mech., 2003, 70, p 49–80

    Article  Google Scholar 

  33. H.-Z. Ding, O. Hartmann, H. Biermann, and H. Mughrabi, Modelling Low-Cycle Fatigue Life of Particulate-Reinforced Metal-Matrix Composites, Mater. Sci. Eng. A, 2002, 333, p 295–305

    Article  Google Scholar 

  34. J.L. Lorca, Fatigue of Particle-and Whisker-Reinforced Metal-Matrix Composites, Prog. Mater. Sci., 2002, 47, p 283–353

    Article  Google Scholar 

  35. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-T651, Eng. Fract. Mech., 2007, 74, p 2810–2823

    Article  Google Scholar 

  36. J.H. Rettberg, J.B. Jordon, M.F. Horstemeyer, and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metallurg. Mater. Trans. A, 2012, 43, p 2260–2274

    Article  Google Scholar 

  37. M.J. Couper, and M.J. Lee, Extruded Properties of Metal Matrix Composites. Australia, 1990

  38. D. Lloyd, Composites: Process, Properties and Products, L. Arnberg, O. Lohne E. Nes, and N. Ryum, Ed., The Third International Conference on Aluminum Alloys (ICAA3), Norwegian Institute of Technology, Trondheim, Norway, 1992

  39. ASTM E-606-06: Standard Test Method for Strain Amplitude Testing of Materials. American Society for Testing Materials, Race Street, Philadelphia, PA, 1997

  40. J.B. Jordon, J.B. Gibson, M.F. Horstemeyer, H.E. Kadiri, J.C. Baird, and A. Luo, Effect of Twinning, Slip, and Inclusions on the Fatigue Anisotropy of Extrusion-Textured AZ61 Magnesium Alloy, Mater. Sci. Eng. A, 2011, 528, p 6860

    Article  Google Scholar 

  41. K. Gall, M. Horstemeyer, D.L. McDowell, and L. Fan, Finite Element Analysis of the Stress Distributions Near Damaged Si Particle Clusters in Cast Al-Si Alloys, Mech. Mater., 2000, 32, p 277–301

    Article  Google Scholar 

  42. D.R. Hayhurst, F.A. Leckie, D.L. McDow, Damage Growth Under Nonproportional Loading, Multiaxial Fatigue—ASTM STP 853, American Society for Testing Materials, Race Street, Philadelphia, USA, 1985

  43. D.W. Brown, A. Jain, S.R. Agnew, and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539(543), p 3407–3413

    Article  Google Scholar 

  44. J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metallurg. Mater. Trans. A, 2010, 41, p 356–363

    Article  Google Scholar 

  45. E.A. Starke, Jr., Aluminium Alloys of the 70s: Scientific Solutions to Engineering Problems. An Invited Review, Mater. Sci. Eng., 1977, 29, p 99–115

    Article  Google Scholar 

  46. E.A. Starke Jr. Aluminum Alloys: Contemporary Research and Applications, A.K. Vasudevan, and R.D. Doherty Eds., Materials Science and Technology, Vol 31. New York, 1989

  47. S. Kumai, J. King, and J. Knott, Short and Long Fatigue Crack Growth in a Sic Reinforced Aluminium Alloy, Fatigue Fract. Eng. Mater. Struct., 1990, 13, p 511–524

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Lyan Garcia and Jeb Tingle for the encouragement of this study. A portion of this research was funded by the U.S. Army Engineer Research and Development Center, Army Corp of Engineers, under Contract No. W912HZ-11-C-0040. Permission to publish was granted by the Director of the Geotechnical and Structures Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Srivatsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCullough, R.R., Jordon, J.B., Brammer, A.T. et al. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure. J. of Materi Eng and Perform 23, 65–76 (2014). https://doi.org/10.1007/s11665-013-0766-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0766-x

Keywords

Navigation