Skip to main content
Log in

Research on Diameter Tolerance of Transmission Shaft Based on Interval Analysis

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This paper describes how to discuss the uncertainty of diameter tolerance by using interval analysis. Firstly, the interval relationship among reliability, diameter tolerance and process capability index (PCI) is obtained. Considering the reasonable PCI range, then reliability range is calculated and compared by using universal gray method and combinational method, respectively. Finally, the ranges of improved tolerance and other uncertain variables are obtained. The results show that the reliability and tolerance ranges obtained by universal gray method are more reasonable. This paper provides a research thought for the uncertainty of diameter tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. W. Wu, S.S. Rao, Fuzzy analysis of geometric tolerances using interval method. Proc. Inst. Mech. Eng. C J. Mech. 220(4), 489–497 (2006)

    Article  Google Scholar 

  2. K.G. Swift, M. Raines, J.D. Booker, Tolerance optimization in assembly stacks based on capable design. Proc. Inst. Mech. Eng. B J. Mech. 213(7), 677–693 (1999)

    Article  Google Scholar 

  3. A. Tiwari, P.C. Chang, M.K. Tiwari, A highly optimised tolerance-based approach for multi-stage, multi-product supply chain network design. Int. J. Prod. Res. 50(19), 5430–5444 (2012)

    Article  Google Scholar 

  4. M.F. Huang, Y.R. Zhong, Z.G. Xu, Concurrent process tolerance design based on minimum product manufacturing cost and quality loss. Int. J. Adv. Manuf. Technol. 25(7), 714–722 (2005)

    Article  Google Scholar 

  5. K. Dems, W. Gutkowski, Manufacturing tolerances and multiple loading conditions in structural configuration optimization. Int. J. Numer. Meth. Eng. 57(10), 1341–1350 (2003)

    Article  Google Scholar 

  6. A.S. Tahan, J. Cauvier, Capability estimation of geometrical tolerance with a material modifier by a Hasofer–Lind index. J. Manuf. Sci. E Trans. ASME 134(2), 1–11 (2012)

    Google Scholar 

  7. J.N. Wu, S.Z. Yan, J.L. Li, Y.X. Gu, Mechanism reliability of bistable compliant mechanisms considering degradation and uncertainties: modeling and evaluation method. Appl. Math. Model. 40(23), 10377–10388 (2016)

    Article  Google Scholar 

  8. S.S. Rao, Description and optimum design of fuzzy mechanical systems. J. Mech. Trans. Autom. Des. 109(1), 126–132 (1987)

    Article  Google Scholar 

  9. C. Jiang, Q.F. Zhang, X. Han, J. Liu, D.A. Hu, Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis. Int. J. Numer. Meth. Eng. 103(1), 31–59 (2015)

    Article  Google Scholar 

  10. W.C. Qi, Z.P. Qiu, A collocation interval analysis method for interval structural parameters and stochastic excitation. Sci. China Phys. Mech. Astron. 55(1), 66–77 (2012)

    Article  Google Scholar 

  11. J. Guo, X.P. Du, Reliability sensitivity analysis with random and interval variables. Int. J. Numer. Meth. Eng. 78(13), 1585–1617 (2009)

    Article  Google Scholar 

  12. J.L. Deng, Introduction to grey system theory. J Grey Syst UK 1(1), 1–24 (1989)

    Google Scholar 

  13. Q.Y. Wang, H.Q. Wu, J.S. Xue, K.D. Lin, On grey number: basic element of grey mathematics and its relations with fuzzy and real numbers. J. Grey Syst. UK 1(1), 69–77 (1989)

    Google Scholar 

  14. M. Ebadi, H. Shahriari, A process capability index for simple linear profile. Int. J. Adv. Manuf. Technol. 64(5), 857–865 (2013)

    Article  Google Scholar 

  15. A. Kumar, P.B. Nair, A.J. Keane, S. Shahpar, Robust design using bayesian Monte Carlo. Int. J. Numer. Meth. Eng. 73(11), 1497–1517 (2008)

    Article  Google Scholar 

  16. J.M. Juran, Quality Control Handbook (McGraw-Hill, New York, 1974)

    Google Scholar 

  17. E. Kane, Victor, process capability indices. J. Qual. Technol. 38(4), 884–904 (1986)

    Google Scholar 

  18. L.K. Chang, S.W. Cheng, F. Spiring, A new measure of process capability. J. Qual. Technol. 20(3), 162–175 (1988)

    Article  Google Scholar 

  19. W.L. Pearn, S. Kotz, N.L. Johnson, Distribution and inferential properties of process capability indexes. J. Qual. Technol. 24(4), 216–231 (1992)

    Article  Google Scholar 

  20. W. Taam, P. Subbaiah, J.W. Liddy, A note on multivariate capability indices. J Appl Stat 20(3), 339–351 (1993)

    Article  Google Scholar 

  21. D.P. Karl, J. Morisette, W. Taam, Some applications of a multivariate capability index in geometric dimensioning and tolerancing. Qual. Eng. 6(4), 649–665 (1994)

    Article  Google Scholar 

  22. B. Wu, M.F. Li, Mechanical Parts and System Reliability Model (Chemical Industry Press, Beijing, 2003)

    Google Scholar 

  23. X.T. Liu, H.Z. Qi, X.L. Wang, Y.S. Wang, C.C. Li, M.L. Wang, Reliability analysis and evaluation of differential system based on low load strengthening model. Qual. Reliab. Eng. Int. 32(2), 647–662 (2015)

    Article  Google Scholar 

  24. P.K. Singh, P.K. Jain, S.C. Jain, Important issues in tolerance design of mechanical assemblies, part 1: tolerance analysis. Proc. Inst. Mech. Eng. J J. Eng. 223(10), 1249–1287 (2009)

    Article  Google Scholar 

  25. D.C. Montgomery, Introduction to Statistical Quality Control (Wiley, New Jersey, 2007)

    Google Scholar 

  26. S.S. Rao, L. Berke, Analysis of uncertain structural systems using interval analysis. AIAA J. 35(4), 727–735 (1997)

    Article  Google Scholar 

  27. L. Tenuti, N. Anselmi, P. Rocca, M. Salucci, A. Massa, Minkowski sum method for planar arrays sensitivity analysis with uncertain-but-bounded excitation tolerances. IEEE Trans. Antennas Propag. 65(1), 167–177 (2017)

    Article  Google Scholar 

  28. N. Anselmi, M. Salucci, P. Rocca, A. Massa, Power pattern sensitivity to calibration errors and mutual coupling in linear arrays through circular interval arithmetics. Sensors 16(6), 791 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51675324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintian Liu.

Appendices

Appendix A: Notation

\( C_{{\rm p}} \) :

Process capability index

d :

Diameter of transmission shaft

\( d_{0} \) :

Target diameter

\( d_{i} \) :

Diameter of the ith sample shaft

M T :

Torque

\( \mu_{{M_{{\rm T}} }} \) :

Mean value of the torque

\( n\hat{p}_{i} \) :

Excepted frequency

\( \hat{p}_{i} \) :

Probability estimation

R :

Reliability

\( S_{{\rm d}} \) :

Sample standard deviation

\( S_{{\rm T}} \) :

Shear stress

\( \mu_{{S_{{\rm T}} }} \) :

Mean value of the shear stress

T :

Dimensional tolerance

\( T_{{\rm l}} \) :

Lower bound of the dimensional tolerance

\( T_{{\rm u}} \) :

Upper bound of the dimensional tolerance

\( W_{{\rm T}} \) :

Torsional section modulus

\( Z_{{\rm R}} \) :

Coupling coefficient

\( \alpha \) :

Positive constant in the range [0, 1]

\( \beta \) :

Significance level

\( \delta_{{\rm S}} \) :

Yield strength

\( \mu_{{\delta_{{\rm S}} }} \) :

Mean value of the yield strength

\( \delta_{{\rm T}} \) :

Shear static strength

\( \mu_{{\delta_{{\rm T}} }} \) :

Mean value of the shear static strength

\( \Delta d \) :

Diameter tolerance

\( \mu_{{\rm d}} \) :

Mean value of the sample shafts diameters

\( \nu_{i} \) :

Actual frequency

\( \sigma \) :

Overall standard deviation

\( \sigma_{{\rm d}} \) :

Standard deviation of the diameter

\( \sigma_{{M_{{\rm T}} }} \) :

Standard deviation of the torque

\( \sigma_{{S_{{\rm T}} }} \) :

Standard deviation of the shear stress

\( \sigma_{{\delta_{{\rm S}} }} \) :

Standard deviation of the yield strength

\( \sigma_{{\delta_{{\rm T}} }} \) :

Standard deviation of the shear static strength

\( \phi ( \cdot ) \) :

Density function of standard normal distribution

\( \chi^{2} \) :

Test statistic

Appendix B: The Definition of Interval

Many engineering design problems involve imprecision or approximation or uncertainty to varying degrees. Depending on the nature of imprecision, the analysis and design of the system can be conducted using interval analysis [26], defined as follows:

$$ [x] = [\underline{x} ,\;\overline{x} ] = \{ x \in R:\;\underline{x} \le x \le \;\overline{x} \} $$
(B.1)

where \( [x] \) is an non-empty bounded set of real numbers, \( \bar{x} \) and \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} \) are the upper and lower bounds of the interval, respectively.

Appendix C: Interval Arithmetic

For any intervals \( [a] = [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] \) and \( [b] = [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] \), the interval arithmetic operations are defined as follows [26]:

$$ [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] + [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] = [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\bar{a} + \bar{b}] $$
(C.1)
$$ [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] - [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] = [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} - \bar{b},\bar{a} - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ] $$
(C.2)
$$ [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] \cdot [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] = [\hbox{min} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} \bar{b},\;\bar{a}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{a}\bar{b}),\;\hbox{max} (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} \bar{b},\;\bar{a}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{a}\bar{b})] $$
(C.3)
$$ [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}]/[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] = [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] \cdot [1/\bar{b},\;1/\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ]\; {\text{if}}\;0 \notin [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b} ,\;\bar{b}] $$
(C.4)
$$ k[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;\bar{a}] = \left\{ {\begin{array}{*{20}l} {[k\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ,\;k\bar{a}]} \hfill & {k > 0} \hfill \\ {[k\bar{a},\;k\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ]} \hfill & {k < 0} \hfill \\ \end{array} } \right. \quad {\text{if}}\;k \in R $$
(C.5)

Appendix D: Universal Gray Mathematics

Based on gray system theory, universal gray mathematics is introduced to solve engineering problems with uncertainty and defined as follows [13]:

$$ [g] = (x,\;[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu } ,\bar{\mu }]) \cdot (x,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu } ,\bar{\mu } \in R) $$
(D.1)

where g is a universal number, x is an observed value and \( [\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu } ,\bar{\mu }] \) is the gray information section of x.

For any universal numbers \( [g_{i} ] = (x_{i} ,\;[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{i} ,\bar{\mu }_{i} ])\;(i = 1,2) \), the universal number arithmetic operations are defined as follows [13]:

$$ [g_{1} ] + [g{}_{2}] = \left( {x_{1} + x_{2} ,\;\left[ {\frac{{x_{1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{1} + x_{2} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{2} }}{{x_{1} + x_{2} }},\frac{{x_{1} \bar{\mu }_{1} + x_{2} \bar{\mu }{}_{2}}}{{x_{1} + x_{2} }}} \right]} \right) $$
(D.2)
$$ [g_{1} ] - [g{}_{2}] = \left( {x_{1} - x_{2} ,\;\left[ {\frac{{x_{1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{1} - x_{2} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{2} }}{{x_{1} - x_{2} }},\frac{{x_{1} \bar{\mu }_{1} - x_{2} \bar{\mu }{}_{2}}}{{x_{1} - x_{2} }}} \right]} \right) $$
(D.3)
$$ [g_{1} ] \times [g_{2} ] = (x_{1} x_{2} ,\;[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{2} ,\bar{\mu }_{1} \bar{\mu }_{2} ]) $$
(D.4)
$$ [{{g_{1} ]} \mathord{\left/ {\vphantom {{g_{1} ]} {[g_{2} }}} \right. \kern-0pt} {[g_{2} }}] = (x_{1} /x_{2} ,\;[\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{1} /\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mu }_{2} /,\bar{\mu }_{1} \bar{\mu }_{2} ])\quad {\text{if}}\;g_{2} \ne g^{\prime}_{(0)} $$
(D.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Liu, X., Liang, Z. et al. Research on Diameter Tolerance of Transmission Shaft Based on Interval Analysis. J Fail. Anal. and Preven. 19, 154–160 (2019). https://doi.org/10.1007/s11668-019-00584-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00584-3

Keywords

Navigation