Skip to main content
Log in

Effect of Thermal Spraying Method, Time and Temperature on the Thickness of Thermally Grown Oxide and Lifetime of Thermal Barrier Coatings

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This paper investigates various parameters affecting the thickness of the thermally grown oxide (TGO) layer affecting the lifetime of conventional thermal barrier coatings (TBCs) with two new coatings. The thickness of the TGO layer directly influences the generation of interfacial stresses and delamination of the coating layers. This study examines the effects of the thermal spraying method, time, temperature, and the TC absence on the TGO thickness. In the first new coating, two bond coats are utilized, applied using the high-velocity oxygen fuel (HVOF) and air plasma spraying (APS) methods. The second new coating involves an aluminide diffusion coating applied between the bond coat and substrate. Scanning electron microscope (SEM) analysis of the test samples reveals that the HVOF-applied coating forms a TGO with lower thickness compared to the APS coating. The most extended lifetime of 336 h is achieved by the new coating with a two-layer bond coat, followed by the HVOF coating with 288 h, the diffusion coating with 238 h, and the APS coating with 192 h, respectively. Despite the lower TGO thickness in the HVOF coating compared to the two-layer bond coat, its lifetime is reduced due to severe spinel growth at the interface of TBCs with the HVOF bond coat caused by the faster depletion of aluminum (Al). The diffusion coating increases the concentration of Al in the upper part of the substrate, thereby reducing the depletion of Al from the bond coat through interdiffusion. By retaining the Al in the bond coat for a longer duration, the diffusion coating enhances the lifetime of TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. In this article, the term APS-bond coat refers to the bond coat layer applied by the APS method, and the term HVOF-bond coat refers to the bond coat layer applied by the HVOF method.

References

  1. A. Kebriyaei, M.R. Rahimipour, M. Razavi, and H.A. Alizade, Effect of Solution Precursor on Microstructure and High-Temperature Properties of the Thermal Barrier Coating Made by Solution Precursor Plasma Spray (SPPS) Process, J. Therm. Spray Technol., 2022, 32(1), p 8-28.

    Article  Google Scholar 

  2. X. Qian, P. Yan, X. Wang, and W. Han, Effect of Thermal Barrier Coatings and Integrated Cooling on the Conjugate Heat Transfer and Thermal Stress Distribution of Nickel-Based Superalloy Turbine Vanes, Energy, 2023, 277, p 127774.

    Article  CAS  Google Scholar 

  3. N. Kumar, M. Gupta, D.E. Mack, G. Mauer, and R. Vaßen, Columnar Thermal Barrier Coatings Produced by Different Thermal Spray Processes, J. Therm. Spray Technol., 2021, 30(6), p 1437-1452.

    Article  CAS  Google Scholar 

  4. T. Hayase, H. Waki, and K. Adachi, Residual Stress Change in Thermal Barrier Coating Due to Thermal Exposure Evaluated by Curvature Method, J. Therm. Spray Technol., 2020, 29(6), p 1300-1312.

    Article  Google Scholar 

  5. J. Rahimi, E. Poursaeidi, F. Montakhabi, M.R.J. Sigaroodi, and Y.Y. Jamalabad, Experimental and Numerical Life Evaluation of TBCs with Different BC and Diffusion Coating under Cyclic Thermal Loading, Int. J. Appl. Ceram. Technol. (2023)

  6. Y. Wu, H. Luo, C. Cai, Y. Wang, Y. Zhou, L. Yang, and G. Zhou, Comparison of CMAS Corrosion and Sintering Induced Microstructural Characteristics of APS Thermal Barrier Coatings, J. Mater. Sci. Technol., 2019, 35(3), p 440-447.

    Article  CAS  Google Scholar 

  7. R. Vaßen, E. Bakan, D.E. Mack, and O. Guillon, A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends, J. Therm. Spray Technol., 2022, 31(4), p 685-698.

    Article  Google Scholar 

  8. J. Rahimi, M.R. Sigaroodi, and E. Poursaeidi, Thermal Shock Resistance of Thermal Barrier Coating with Different Bondcoat Types and Diffusion Pre-Coating, Ceram. Int., 2023, 49(2), p 2061-2072.

    Article  CAS  Google Scholar 

  9. B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, and Y. Zhou, Advances on Strategies for Searching for next Generation Thermal Barrier Coating Materials, J. Mater. Sci. Technol., 2019, 35(5), p 833-851.

    Article  CAS  Google Scholar 

  10. B. Malvi and M. Roy, Elevated Temperature Erosion of Plasma Sprayed Thermal Barrier Coating, J. Therm. Spray Technol., 2021, 30(4), p 1028-1037.

    Article  CAS  Google Scholar 

  11. F. Montakhabi, E. Poursaeidi, J. Rahimi, and M.R. Sigaroodi, Investigation of the Effect of BC Layer Surface Roughness and TC Layer Porosity on Stress Values in Plasma Sprayed Coatings Based on SEM Images, Materials Today Communications., 2022, 33, p 104737.

    Article  CAS  Google Scholar 

  12. H. Dong, G. Yang, C. Li, X. Luo, and C. Li, Effect of TGO Thickness on Thermal Cyclic Lifetime and Failure Mode of Plasma-sprayed TBC s, J. Am. Ceram. Soc., 2014, 97(4), p 1226-1232.

    Article  CAS  Google Scholar 

  13. K. Torkashvand, E. Poursaeidi, M. Mohammadi, J. Rahimi, and F. Montakhabi, Experimental and Numerical Study of TGO-Induced Stresses of Plasma-Sprayed Thermal Barrier Coating, Mater Today Commun, 2023, 35, p 105977.

    Article  CAS  Google Scholar 

  14. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976.

    Article  CAS  Google Scholar 

  15. A. Abdelgawad, K. Al-Athel, and J. Albinmousa, Analysis of Crack Initiation and Propagation in Thermal Barrier Coatings Using SEM-Based Geometrical Model with Extended Finite Element Method, Ceram. Int., 2021, 47(23), p 33140-33151.

    Article  CAS  Google Scholar 

  16. M.R. Sigaroodi, E. Poursaeidi, J. Rahimi, and Y.Y. Jamalabad, Heat Treatment Effect on Coating Shock Resistance of Thermal Barrier Coating System with Different Types of Bond Coat, J. Eur. Ceram. Soc., 2023, 43(8), p 3658-3675.

    Article  CAS  Google Scholar 

  17. A.M. Limarga, S. Widjaja, T.H. Yip, and L.K. Teh, Modeling of the Effect of Al2O3 Interlayer on Residual Stress Due to Oxide Scale in Thermal Barrier Coatings, Surf. Coat. Technol., 2002, 153(1), p 16-24.

    Article  CAS  Google Scholar 

  18. K.M. Doleker, H. Ahlatci, and A.C. Karaoglanli, Investigation of Isothermal Oxidation Behavior of Thermal Barrier Coatings (TBCs) Consisting of YSZ and Multilayered YSZ/Gd2Zr2O7 Ceramic Layers, Oxid. Met., 2017, 88(1), p 109-119.

    Article  CAS  Google Scholar 

  19. G. Boissonnet, G. Bonnet, A. Pasquet, N. Bourhila, and F. Pedraza, Evolution of Thermal Insulation of Plasma-Sprayed Thermal Barrier Coating Systems with Exposure to High Temperature, J. Eur. Ceram. Soc., 2019, 39(6), p 2111-2121.

    Article  CAS  Google Scholar 

  20. F. Jing, J. Yang, Z. Yang, and W. Zeng, Critical Compressive Strain and Interfacial Damage Evolution of EB-PVD Thermal Barrier Coating, Mater. Sci. Eng. A, 2020, 776, p 139038.

    Article  CAS  Google Scholar 

  21. J. Shi, T. Zhang, B. Sun, B. Wang, X. Zhang, and L. Song, Isothermal Oxidation and TGO Growth Behavior of NiCoCrAlY-YSZ Thermal Barrier Coatings on a Ni-Based Superalloy, J. Alloys Compd., 2020, 844, p 156093.

    Article  CAS  Google Scholar 

  22. G. An, W. Li, L. Feng, B. Cheng, Z. Wang, Z. Li, and Y. Zhang, Isothermal Oxidation and TGO Growth Behaviors of YAG/YSZ Double-Ceramic-Layer Thermal Barrier Coatings, Ceram. Int., 2021, 47(17), p 24320-24330.

    Article  CAS  Google Scholar 

  23. D.R. Tobergte and S. Curtis, Handbook of Thermal Spray Technology, ASM International: Cleveland, OH, USA, 53 (2013)

  24. W. Nowak, D. Naumenko, G. Mor, F. Mor, D.E. Mack, R. Vassen, L. Singheiser, and W.J. Quadakkers, Effect of Processing Parameters on MCrAlY Bondcoat Roughness and Lifetime of APS–TBC Systems, Surf. Coat. Technol., 2014, 260, p 82-89.

    Article  CAS  Google Scholar 

  25. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202(12), p 2677-2683.

    Article  CAS  Google Scholar 

  26. D. Naumenko, R. Pillai, A. Chyrkin, and W.J. Quadakkers, Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(8), p 1743-1757.

    Article  CAS  Google Scholar 

  27. D. Zheng, Y. Bao, D. Wan, and S. Yi, Determining the Thermal Conductivity of Ceramic Coatings by Relative Method, Int. J. Appl. Ceram. Technol., 2019, 6, p 2299-2305.

    Article  Google Scholar 

  28. Z. Xu, Z. Wang, G. Huang, R. Mu, and L. He, Morphology, Bond Strength and Thermal Cycling Behavior of (Ni, Pt) Al/YSZ EB-PVD Thermal Barrier Coatings, J. Alloys Compnd., 2015, 5(651), p 445-453.

    Article  Google Scholar 

  29. T. Yang, W. Wang, J. Huang, L. Wang, Z. Yang, H. Fang, and D. Ye, Thermal Shock Resistance and Bonding Strength of Novel-Structured Thermal Barrier Coatings with Different Microstructure, J. Therm. Spray Technol., 2022, 31(5), p 1540-1555.

    Article  CAS  Google Scholar 

  30. Y. Chen, X. Zhao, and P. Xiao, Effect of Microstructure on Early Oxidation of MCrAlY Coatings, Acta Mater., 2018, 159, p 150-162.

    Article  CAS  Google Scholar 

  31. M.J. Pomeroy, Coatings for Gas Turbine Materials and Long Term Stability Issues, Mater. Des., 2005, 26(3), p 223-231.

    Article  CAS  Google Scholar 

  32. Y. Guo, L. Wei, Q. He, Y. Deng, W. He, and H. Guo, PS–PVD Alumina Overlayer on Thermal Barrier Coatings Against CMAS Attack, J. Therm. Spray Technol., 2021, 30(4), p 864-872.

    Article  CAS  Google Scholar 

  33. J. Krishnasamy, S.A. Ponnusami, S. Turteltaub, and S. van der Zwaag, Numerical Investigation into the Effect of Splats and Pores on the Thermal Fracture of Air Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2019, 28(8), p 1881-1892.

    Article  CAS  Google Scholar 

  34. R. Eriksson, Thermal Barrier Coatings: Durability Assessment and Life Prediction, Linköping University Electronic Press, (2013)

  35. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284.

    Article  CAS  Google Scholar 

  36. W.G. Sloof and T.J. Nijdam, On the High-Temperature Oxidation of MCrAlY Coatings, Int. J. Mater. Res., 2009, 100(10), p 1318-1330.

    Article  CAS  Google Scholar 

  37. E. Poursaeidi, Y.Y. Jamalabad, J. Rahimi, and M.R.J. Sigaroodi, The Effect of CMAS Penetration on the Microstructure and Failure of the TBCs Applied by APS/APS Method, Surf. Coat. Technol., 2022, 451, p 129053.

    Article  CAS  Google Scholar 

  38. W.R. Chen, X. Wu, B.R. Marple, R.S. Lima, and P.C. Patnaik, Pre-Oxidation and TGO Growth Behaviour of an Air-Plasma-Sprayed Thermal Barrier Coating, Surf. Coat. Technol., 2008, 202(16), p 3787-3796.

    Article  CAS  Google Scholar 

  39. R.G. Wellman and J.R. Nicholls, A Review of the Erosion of Thermal Barrier Coatings, J. Phys. D Appl. Phys., 2007, 40(16), p R293.

    Article  CAS  Google Scholar 

  40. N. Birks, G.H. Meier,, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Second Edition, Introduction to the High Temperature Oxidation of Metals, Second Edition, (2006)

  41. X. Liu, T. Wang, C. Li, Z. Zheng, and Q. Li, Microstructural Evolution and Growth Kinetics of Thermally Grown Oxides in Plasma Sprayed Thermal Barrier Coatings, Prog. Nat. Sci. Mater. Int., 2016, 26(1), p 103-111.

    Article  CAS  Google Scholar 

  42. V.K. Tolpygo and D.R. Clarke, Surface Rumpling of a (Ni, Pt)Al Bond Coat Induced by Cyclic Oxidation, Acta Mater., 2000, 48(13), p 3283-3293.

    Article  CAS  Google Scholar 

  43. V.K. Tolpygo and D.R. Clarke, On the Rumpling Mechanism in Nickel-Aluminide Coatings, Acta Mater., 2004, 52(17), p 5115-5127.

    CAS  Google Scholar 

  44. Z. Zou, L. Jia, L. Yang, X. Shan, L. Luo, F. Guo, X. Zhao, and P. Xiao, Role of Internal Oxidation on the Failure of Air Plasma Sprayed Thermal Barrier Coatings with a Double-Layered Bond Coat, Surf. Coat. Technol., 2017, 319, p 370-377.

    Article  CAS  Google Scholar 

  45. D. Renusch, M. Schorr, and M. Schütze, The Role That Bond Coat Depletion of Aluminum Has on the Lifetime of APS-TBC under Oxidizing Conditions, Mater. Corros., 2008, 59(7), p 547-555.

    Article  CAS  Google Scholar 

  46. A.H. Heuer, D.B. Hovis, J.L. Smialek, and B. Gleeson, Alumina Scale Formation: A New Perspective, J. Am. Ceram. Soc., 2011, 94, p s146-s153.

    Google Scholar 

  47. M. Kilo, C. Argirusis, G. Borchardt, and R.A. Jackson, Oxygen Diffusion in Yttria Stabilised Zirconia—Experimental Results and Molecular Dynamics Calculations, Phys. Chem. Chem. Phys., 2003, 5(11), p 2219-2224.

    Article  CAS  Google Scholar 

  48. L.B. Chen, Yttria-Stabilized Zirconia Thermal Barrier Coatings—A Review, Surf. Rev. Lett., 2006, 05, p 535-544.

    Article  Google Scholar 

  49. T. Beck, M. Białas, P. Bednarz, L. Singheiser, K. Bobzin, N. Bagcivan, D. Parkot, T. Kashko, I. Petković, B. Hallstedt, and S. Nemna, Modeling of Coating Process, Phase Changes, and Damage of Plasma Sprayed Thermal Barrier Coatings on Ni-Base Superalloys, Adv. Eng. Mater., 2010, 3, p 110-126.

    Article  Google Scholar 

  50. V. Postolenko, Failure Mechanisms of Thermal Barrier Coatings for High Temperature Gas Turbine Components under Cyclic Thermal Loading, Fachgruppe für Metallurgie und Werkstofftechnik, (2008)

  51. W.X. Zhang, Y.L. Sun, and T.J. Wang, Effect of Spinel Growth on the Delamination of Thermal Barrier Coatings, Key Eng. Mater., 2011, 462, p 389-394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Poursaeidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, J., Poursaeidi, E., Montakhabi, F. et al. Effect of Thermal Spraying Method, Time and Temperature on the Thickness of Thermally Grown Oxide and Lifetime of Thermal Barrier Coatings. J Therm Spray Tech 32, 2580–2602 (2023). https://doi.org/10.1007/s11666-023-01670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01670-7

Keywords

Navigation