Skip to main content
Log in

Elevated Temperature Erosion of Plasma Sprayed Thermal Barrier Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia (YSZ) is used extensively as a ceramic top coat of thermal barrier coating (TBC) system in land-based gas turbines and aero engines. TBC enables modern engines to operate at significantly higher gas temperatures. TBCs are subjected to solid particle erosion at elevated temperature, especially during the operation of aero engines in sandy terrain. Thus, the objective of the present investigation is to evaluate the impact erosion response of these coatings as a function of various eroding conditions. Toward that purpose, YSZ TBC was deposited on Ni base alloy using air plasma spraying technique. The microstructural features of the coating are evaluated, and coated samples are subjected to erosion test employing a high-temperature air jet erosion testing machine at various temperatures, at different impact velocities, and at different impact angles. The results show a brittle erosion response of TBC at all temperatures. The erosion rate of TBC is generally independent of temperature under the normal impact, and it increases with temperature under oblique impact at high impact velocity. Intersplat adhesion governs the erosion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Curry, N. Markocsan, L. Östergren, X.-H. Li and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2013, 22, p 864–872.

    Article  CAS  Google Scholar 

  2. S.G. Sapate and M. Roy, Solid Particle Erosion of Thermal Sprayed Coatings, Therm. Sprayed Coat. Their Tribol. Perform., 2015 https://doi.org/10.4018/978-1-4666-7489-9.ch007

    Article  Google Scholar 

  3. W. Algenaid et al., Influence of Microstructure on the Erosion Behaviour of Suspension Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2019, 375, p 86–99.

    Article  CAS  Google Scholar 

  4. F. Cernuschi et al., Solid Particle Erosion of Standard and Advanced Thermal Barrier Coatings, Wear, 2016, C, p 43–51.

    Article  Google Scholar 

  5. F. Cernuschi et al., Solid Particle Erosion of Thermal Spray and Physical Vapour Deposition Thermal Barrier Coatings, Wear, 2011, 271, p 2909–2918.

    Article  CAS  Google Scholar 

  6. M.P. Schmitt, B.J. Harder and D.E. Wolfe, Process-Structure-Property Relations for the Erosion Durability of Plasma Spray-Physical Vapor Deposition (PS-PVD) Thermal Barrier Coatings, Surf. Coat. Technol., 2016, 297, p 11–18.

    Article  CAS  Google Scholar 

  7. M.P. Schmitt, A.K. Rai, D. Zhu, M.R. Dorfman and D.E. Wolfe, Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 279, p 44–52.

    Article  CAS  Google Scholar 

  8. C.S. Ramachandran, V. Balasubramanian and P.V. Ananthapadmanabhan, Erosion of Atmospheric Plasma Sprayed Rare Earth Oxide Coatings Under Air Suspended Corundum Particles, Ceram. Int., 2013, 39, p 649–672.

    Article  CAS  Google Scholar 

  9. D. Shin and A. Hamed, Influence of Micro–Structure on Erosion Resistance of Plasma Sprayed 7YSZ Thermal Barrier Coating Under Gas Turbine Operating Conditions, Wear, 2018, 396–397, p 34–47.

    Article  Google Scholar 

  10. Z. Qu et al., An Investigation on Erosion Behavior of Nanostructured 7YSZ Coatings at Elevated Temperature, Surf. Coat. Technol., 2016, 299, p 129–134.

    Article  CAS  Google Scholar 

  11. N. Ramanujam and T. Nakamura, Erosion Mechanisms of Thermally Sprayed Coatings with Multiple Phases, Surf. Coat. Technol., 2009, 204, p 42–53.

    Article  CAS  Google Scholar 

  12. B.Z. Janos, E. Lugscheider and P. Remer, Effect of Thermal Aging on the Erosion Resistance of Air Plasma Sprayed Zirconia Thermal Barrier Coating, Surf. Coat. Technol., 1999, 113, p 278–285.

    Article  CAS  Google Scholar 

  13. J.R. Nicholls, M.J. Deakin and D.S. Rickerby, A Comparison Between the Erosion Behaviour of Thermal Spray and Electron Beam Physical Vapour Deposition Thermal Barrier Coatings, Wear, 1999, 233–235, p 352–361.

    Article  Google Scholar 

  14. M.P. Schmitt et al., Effect of Gd Content on Mechanical Properties and Erosion Durability of Sub-stoichiometric Gd2Zr2O7, Surf. Coat. Technol., 2017, 313, p 177–183.

    Article  CAS  Google Scholar 

  15. S. Mahade et al., Tailored Microstructures of Gadolinium Zirconate/YSZ Multi-Layered Thermal Barrier Coatings Produced by Suspension Plasma Spray: Durability and Erosion Testing, J. Mater. Process. Technol., 2019, 264, p 283–294.

    Article  CAS  Google Scholar 

  16. S. Mahade et al., Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray, J. Therm. Spray Technol., 2017, 26, p 108–115.

    Article  CAS  Google Scholar 

  17. D. Wang, Z. Tian, L. Shen, Z. Liu and Y. Huang, Effects of Laser Remelting on Microstructure and Solid Particle Erosion Characteristics of ZrO2–7 wt.%Y2O3 Thermal Barrier Coating Prepared by Plasma Spraying, Ceram. Int., 2014, 40, p 8791–8799.

    Article  CAS  Google Scholar 

  18. P.-C. Tsai, J.-H. Lee and C.-L. Chang, Improving the Erosion Resistance of Plasma-Sprayed Zirconia Thermal Barrier Coatings by Laser Glazing, Surf. Coat. Technol., 2007, 202, p 719–724.

    Article  CAS  Google Scholar 

  19. M. Roy, K.K. Ray and G. Sundararajan, Erosion-Oxidation Interaction in Ni and Ni-20Cr Alloy, Metall. Mater. Trans. A, 2001, 32, p 1431–1451.

    Article  Google Scholar 

  20. M. Roy, K.K. Ray and G. Sundararajan, The Influence of Erosion-Induced Roughness on the Oxidation Kinetics of Ni and Ni-20Cr Alloys, Oxid. Met., 1999, 51, p 251–272.

    Article  CAS  Google Scholar 

  21. M. Roy, Solid Particle Erosion Behavior of WC Coating Obtained by Electrospark Technique and Detonation Spraying, Tribol. Trans., 2014, 57, p 1028–1036.

    Article  CAS  Google Scholar 

  22. Roy, M. & Davim, J. P. Thermal Sprayed Coatings and their Tribological Performances. http://services.igi-global.com/resolvedoi/resolve.aspx? Doi: https://doi.org/10.4018/978-1-4666-7489-9 (IGI Global, 1AD).

  23. R.G. Wellman and J.R. Nicholls, A Review of the Erosion of Thermal Barrier Coatings, J. Phys. Appl. Phys., 2007, 40, p R293–R305.

    Article  CAS  Google Scholar 

  24. S. Krämer, J. Yang, C.G. Levi and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89, p 3167–3175.

    Article  Google Scholar 

  25. D.E. Mack, T. Wobst, M.O.D. Jarligo, D. Sebold and R. Vaben, Lifetime and Failure Modes of Thermal Barrier Coatings in Thermal Gradient Rig Tests with Simultaneous CMAS Injection, Surf. Coat. Technol., 2017, 324, p 36–47.

    Article  CAS  Google Scholar 

  26. G. Sundararajan and P.G. Shewmon, A New Model for the Erosion of Metals at Normal Incidence, Wear, 1983, 84, p 237–258.

    Article  Google Scholar 

  27. M. Roy, M. Subramaniyam and G. Sundararajan, Room Temperature Erosion Behaviour of a Precipitation Hardened Stainless Steel, Tribol. Int., 1992, 25, p 271–280.

    Article  CAS  Google Scholar 

  28. G. Sundararajan, The Solid Particle Erosion of Metals and Alloys, Trans. Indian Inst. Met., 1983, 36, p 474–495.

    Google Scholar 

  29. G.D. Portu et al., Solid Particle Erosion Behaviour of Laminated Ceramic Structures, Wear, 2020, 442–443, p 203147.

    Article  Google Scholar 

  30. M. Roy, Elevated Temperature Erosive Wear of Metallic Materials, J. Phys. Appl. Phys., 2006, 39, p R101–R124.

    Article  CAS  Google Scholar 

  31. M. Roy, A. Pauschitz, J. Wernisch and F. Franek, Effect of Mating Surface on the High Temperature Wear of 253 MA Alloy, Mater. Corros., 2004, 55, p 259–273.

    Article  CAS  Google Scholar 

  32. K. Anand, S.K. Hovis, H. Conrad and R.O. Scattergood, Flux Effects in Solid Particle Erosion, Wear, 1987, 118, p 243–257.

    Article  Google Scholar 

  33. M. Roy, K.K. Ray and G. Sundararajan, An Analysis of the Transition from Metal Erosion to Oxide Erosion, Wear, 1998, 217, p 312–320.

    Article  CAS  Google Scholar 

  34. A. Pauschitz, M. Roy and F. Franek, Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures, Tribol. Int., 2008, 41, p 584–602.

    Article  CAS  Google Scholar 

  35. B. Venkatesh, B. Malvi, M. Roy and P. Sarkar, Effect of Welding Conditions on Erosive Wear of Hard-Faced Co-Based Alloy Layer , Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2018, 232, p 1377–1389.

    Article  CAS  Google Scholar 

  36. H.E. Eaton and R.C. Novak, Particulare Erosion of Plasma-Sprayed Porous Ceramic, Surf. Coat. Technol., 1987, 30, p 41–50.

    Article  CAS  Google Scholar 

  37. R. He, Z. Qu, Y. Pei and D. Fang, High Temperature Indentation Tests of YSZ Coatings in Air Up to 1200°C, Mater. Lett., 2017, 209, p 5–7.

    Article  CAS  Google Scholar 

  38. F.L. Shang, X. Zhang, X.C. Guo, P.F. Zhao and Y. Chang, Determination of High Temperature Mechanical Properties of Thermal Barrier Coatings by Nanoindentation, Surf. Eng., 2014, 30, p 283–289.

    Article  CAS  Google Scholar 

  39. G.N. Morscher, P. Pirouz and A.H. Heuer, Temperature Dependence of Hardness in Yttria-Stabilized Zirconia Single Crystals, J. Am. Ceram. Soc., 1991, 74, p 491–500.

    Article  CAS  Google Scholar 

  40. R.G. Wellman, M.J. Deakin and J.R. Nicholls, The Effect of TBC Morphology on the Erosion Rate of EB PVD TBCs, Wear, 2005, 258, p 349–356.

    Article  CAS  Google Scholar 

  41. M. Roy, Y. Tirupataiah and G. Sundararajan, Effect of Particle Shape on the Erosion of Cu and Its Alloys, Mater. Sci. Eng. A, 1993, 165, p 51–63.

    Article  Google Scholar 

  42. M. Roy, Dynamic Hardness of Detonation Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2002, 11, p 393–399.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the director, DMRL, for granting permission to carry out this work in DMRL and for permitting to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Malvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvi, B., Roy, M. Elevated Temperature Erosion of Plasma Sprayed Thermal Barrier Coating. J Therm Spray Tech 30, 1028–1037 (2021). https://doi.org/10.1007/s11666-021-01189-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01189-9

Keywords

Navigation