Skip to main content
Log in

Experimental Study and Numerical Simulation of Y2O3 Coatings Deposited by Plasma Spraying at Different Torch Powers

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermodynamically stable Y2O3 coatings produced by plasma spraying act as an excellent chemical barrier for molten uranium interaction with graphite crucibles used in uranium melting pyrochemical reprocessing applications. The establishment of the structure–property relationship, performance and life assessment of Y2O3 plasma spray coatings is found to be uncertain due to its characteristic microstructure composed of various intrinsic process-dependent defects. In this study, Y2O3 coating is deposited on high-density graphite at three different plasma spray powers, i.e., 25, 30 and 35 kW, with in situ in-flight particle temperature and velocity measurements using a spray diagnostic system. The Y2O3 splat formation is studied in detail using a computational fluid dynamics tool. To study the shape and propagation characteristics of the splat, the numerical simulations were performed at three different plasma spray powers. The numerically obtained spread factor and shape characteristics of the Y2O3 splats are correlated with the in-house experimental observations, which highlight the role of velocity and temperature of the in-flight particle at impact on the bonding characteristics. A thermal cycling study was performed at 1550 °C under an inert argon atmosphere, followed by microstructure, phase and mechanical property analysis to compare the durability of the Y2O3 coating sprayed at different plasma spraying powers. The results indicated that the Y2O3 coating deposited at 30 kW with optimum superheat ~ 375 °C for molten particles resulted in the formation of dense pancake splats with minimal shrinkage cracks and residual stresses in accordance with the simulation analysis. Corresponding lamellar structures with 12-15% porosity have contributed to the maximum durability, i.e., 10 cycles in the thermal fatigue test at 1550 °C. The linear increase in indentation modulus, hardness and fracture toughness with thermal cycles is attributed to the densification in the Y2O3 coating due to sintering. With optimized Y2O3 deposition parameters, the highest durability of the coating is demonstrated, and the failure mechanism is elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Nagarajan, B.P. Reddy, S. Ghosh, G. Ravisankar, K. Mohandas, U.K. Mudali, K. Kutty, K.K. Viswanathan, C.A. Babu, and P. Kalyanasundaram, Development of Pyrochemical Reprocessing for Spent Metal Fuels, Energy Procedia, 2011, 7, p 431-436.

    Article  CAS  Google Scholar 

  2. C.J. Rao, A.R. Shankar, C. Mallika, and U.K. Mudali, Performance Evaluation of Plasma Sprayed Yttria Coatings on High Density Graphite for Cathode Processor Applications, Ceram. Int., 2015, 41(2), p 3128-3136.

    Article  CAS  Google Scholar 

  3. J.R. Ch, E. Vetrivendan, B. Madhura, and S. Ningshen, A Review of Ceramic Coatings for High Temperature Uranium Melting Applications, J. Nucl. Mater., 2020, 540, p 152354.

    Article  CAS  Google Scholar 

  4. G. Pulci, M. Tului, J. Tirillò, F. Marra, S. Lionetti, and T. Valente, High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles, J. Therm. Spray Technol., 2011, 20(1), p 139-144.

    Article  CAS  Google Scholar 

  5. E. Vetrivendan, J. Jayaraj, S. Ningshen, C. Mallika, and U.K. Mudali, Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media, J. Therm. Spray Technol., 2018, 27(3), p 512-523.

    Article  CAS  Google Scholar 

  6. M.A.E. Hafez, S.A. Akila, M.A. Khedr, and A.S. Khalil, Improving Wear Resistance of Plasma-Sprayed Calcia and Magnesia-Stabilized Zirconia Mixed Coating: Roles of Phase Stability and Microstructure, Sci. Rep., 2020, 10(1), p 1-14.

    Article  Google Scholar 

  7. T. Wang, F. Shao, J. Ni, H. Zhao, Y. Zhuang, J. Sheng, X. Zhong, J. Yang, S. Tao, and K. Yang, Calcium-Magnesium-Aluminum-Silicate (CMAS) Corrosion Resistance of Y-Yb-Gd-Stabilized Zirconia Thermal Barrier Coatings, J. Therm. Spray Technol., 2021, 30(1), p 442-456.

    Article  CAS  Google Scholar 

  8. D. Tejero-Martin, C. Bennett, and T. Hussain, A Review on Environmental Barrier Coatings: History, Current State of the Art and Future Developments, J. Eur. Ceram. Soc., 2021, 41(3), p 1747-1768.

    Article  CAS  Google Scholar 

  9. N.P. Padture, M. Gell, P.G. Klemens, Ceramic materials for thermal barrier coatings, U. S. Patent, No. 6015630, (2000).

  10. D. TejeroMartin, M.R. Rad, A. McDonald, and T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J. Therm. Spray Technol., 2019, 28(4), p 598-644.

    Article  CAS  Google Scholar 

  11. M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206(1), p 16-23.

    Article  CAS  Google Scholar 

  12. M. Shinozaki and T. Clyne, A Methodology, Based on Sintering-Induced Stiffening, for Prediction of the Spallation Lifetime of Plasma-Sprayed Coatings, Acta Mater., 2013, 61(2), p 579-588.

    Article  CAS  Google Scholar 

  13. P. Jiang, X. Fan, Y. Sun, D. Li, B. Li, and T. Wang, Competition Mechanism of Interfacial Cracks in Thermal Barrier Coating System, Mater. Des., 2017, 132, p 559-566.

    Article  Google Scholar 

  14. C. Bumgardner, B. Croom, and X. Li, High-Temperature Delamination Mechanisms of Thermal Barrier Coatings: in-situ Digital Image Correlation and Finite Element Analyses, Acta Mater., 2017, 128, p 54-63.

    Article  CAS  Google Scholar 

  15. H. Zhang, J. Wang, S. Dong, J. Yuan, X. Zhou, S. Duo, S. Chen, P. Huo, J. Jiang, and L. Deng, Mechanical Properties, and Thermal Cycling behavior of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying, J. Alloy. Compd., 2019, 785, p 1068-1076.

    Article  CAS  Google Scholar 

  16. B. Madhura, E. Vetrivendan, C.J. Rao, P. Venkatesh, and S. Ningshen, Evaluation of Yttria Coated High Density Graphite with Silicon Carbide Interlayer for Uranium Melting Applications, Ceram. Int., 2019, 45(9), p 11694-11702.

    Article  CAS  Google Scholar 

  17. B. Madhura, E. Vetrivendan, C.J. Rao, A. Udayakumar, and S. Ningshen, Surface Optimization of CVD Grown Silicon Carbide Interlayer on Graphite for Plasma Sprayed Yttria Topcoat, Surf. Coat. Technol., 2020, 383, p 125250.

    Article  CAS  Google Scholar 

  18. B. Madhura, E. Vetrivendan, C.J. Rao, and S. Ningshen, Evaluation of Oxidation Resistant SiC-ZrB2 Composite Interlayer for Plasmasprayed Y2O3 Coating Over Graphite, Corros. Sci., 2021, 190, p 109645.

    Article  Google Scholar 

  19. P. Lashmi, P. Ananthapadmanabhan, G. Unnikrishnan, and S. Aruna, Present Status, and Future Prospects of Plasma Sprayed Multilayered Thermal Barrier Coating Systems, J. Eur. Ceram. Soc., 2020, 40(8), p 2731-2745.

    Article  CAS  Google Scholar 

  20. M. Rudolphi, M.C. Galetz, and M. Schütze, Mechanical Stability Diagrams for Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2021, 30(3), p 694-707.

    Article  CAS  Google Scholar 

  21. C.J. Rao, B. Madhura, E. Vetrivendan, K. Thyagarajan, S. Ningshen, C. Mallika, and U.K. Mudali, Molten Salt Corrosion Resistance of Yttria Stabilized Zirconia Coating with Silicon Carbide Interlayer on High Density Graphite, Trans. Indian Inst. Met., 2018, 71(5), p 1237-1245.

    Article  Google Scholar 

  22. L. Jin, L. Ni, Q. Yu, A. Rauf, and C. Zhou, Thermal Cyclic Life, and Failure Mechanism of Nanostructured 13 wt% Al2O3 Doped YSZ Coating Prepared by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38(4), p 2983-2989.

    Article  CAS  Google Scholar 

  23. J. Huang, W. Wang, Y. Li, H. Fang, D. Ye, X. Zhang, and S. Tu, Improve durability of Plasma-Splayed Thermal Barrier Coatings by Decreasing Sintering-Induced Stiffening in Ceramic Coatings, J. Eur. Ceram. Soc., 2020, 40(4), p 1433-1442.

    Article  CAS  Google Scholar 

  24. J.B. Huang, W.Z. Wang, Y.J. Li, H.J. Fang, D.D. Ye, X.C. Zhang, and S.T. Tu, A Novel Strategy to Control the Microstructure of Plasma-Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2020, 402, p 126304.

    Article  CAS  Google Scholar 

  25. X. Zhang, A.C. Cocks, Y. Okajima, K. Takeno, and T. Torigoe, An Image-Based Model for the Sintering of Air Plasma Sprayed Thermal Barrier Coatings, Acta Mater., 2021, 206, p 116649.

    Article  CAS  Google Scholar 

  26. S.V. Shinde, C.A. Johnson, and S. Sampath, Segmentation Crack Formation Dynamics During Air Plasma Spraying of Zirconia, Acta Mater., 2020, 183, p 196-206.

    Article  CAS  Google Scholar 

  27. S.V. Shinde and S. Sampath, Interplay between Cracking and Delamination in Incrementally Deposited Plasma Sprayed Coatings, Acta Mater., 2021, 215, p 117074.

    Article  CAS  Google Scholar 

  28. M. Mutter, G. Mauer, R. Mücke, O. Guillon, and R. Vaßen, Correlation of Splat Morphologies with Porosity and Residual Stress in Plasma-Sprayed YSZ Coatings, Surf. Coat. Technol., 2017, 318, p 157-169.

    Article  CAS  Google Scholar 

  29. S. Bhusal, C. Zhang, J. Bustillos, P. Nautiyal, B. Boesl, and A. Agarwal, A computational Approach for Predicting Microstructure and Mechanical Properties of Plasma Sprayed Ceramic Coatings from Powder to Bulk, Surf. Coat. Technol., 2019, 374, p 1-11.

    Article  CAS  Google Scholar 

  30. A. Fauchais, M. Vardelle, and M. Vardelle, Fukumoto Knowledge concerning splat formation: an invited review, J. Therm. Spray Technol., 2004, 13(3), p 337-360.

    Article  CAS  Google Scholar 

  31. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678.

    Article  CAS  Google Scholar 

  32. G.M. Ingo and T. de Caro, Chemical Aspects of Plasma Spraying of Zirconia-Based Thermal Barrier Coatings, Acta Mater., 2008, 56(18), p 5177-5187.

    Article  CAS  Google Scholar 

  33. K. Richardt, K. Bobzin, D. Sporer, T. Schläfer, and P. Fiala, Tailor-Made Coatings for Turbine Applications using the Triplex Pro 200, J. Therm. Spray Technol., 2008, 17(5-6), p 612-616.

    Article  CAS  Google Scholar 

  34. A. Tran and M. Hyland, The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations, J. Therm. Spray Technol., 2010, 19(1), p 11-23.

    Article  CAS  Google Scholar 

  35. M. Gupta, K. Skogsberg, and P. Nylén, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Therm. Spray Technol., 2014, 23(1-2), p 170-181.

    Article  Google Scholar 

  36. X. Zhang, M. Watanabe, and S. Kuroda, Effects of Processing Conditions on the Mechanical Properties and Deformation Behaviors of Plasma-Sprayed Thermal Barrier Coatings: Evaluation of Residual Stresses and Mechanical Properties of Thermal Barrier Coatings on the Basis of In Situ Curvature Measurement Under a Wide Range of Spray Parameters, Acta Mater., 2013, 61(4), p 1037-1047.

    Article  CAS  Google Scholar 

  37. J. Wang, J. Sun, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, and X. Cao, Effect of Spraying Power on Microstructure and Property of Nanostructured YSZ Thermal Barrier Coatings, J. Alloy. Compd., 2018, 730, p 471-482.

    Article  CAS  Google Scholar 

  38. S. Li, Y. An, H. Zhou, and J. Chen, Plasma Sprayed YSZ Coatings Deposited at Different Deposition Temperatures, part 1: Splats, Microstructures, Mechanical Properties and Residual Stress, Surf. Coat. Technol., 2018, 350, p 712-721.

    Article  CAS  Google Scholar 

  39. A. Nouri and A. Sola, Powder Morphology in Thermal Spraying, J. Adv. Manuf. Process., 2019, 1(3), p e10020.

    Article  CAS  Google Scholar 

  40. B. Guerreiro, R.S. Lima, N. Curry, M. Leitner, and K. Körner, The Influence of Plasma Composition in the Thermal Cyclic Performance of Yttria-Stabilized Zirconia (8YSZ) Thermal Barrier Coatings (TBCs), J. Therm. Spray Technol., 2021, 30(1), p 59-68.

    Article  CAS  Google Scholar 

  41. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spray Technol., 2002, 11, p 206-217.

    Article  Google Scholar 

  42. D. Zois, A. Lekatou, and M. Vardavoulias, A Microstructure and Mechanical Property Investigation on Thermally Sprayed Nanostructured Ceramic Coatings Before and After a Sintering Treatment, Surf. Coat. Technol., 2009, 204(1-2), p 15-27.

    Article  CAS  Google Scholar 

  43. A. Keyvani, M. Bahamirian, and A. Kobayashi, Effect of Sintering Rate on the Porous Microstructural, Mechanical, and Thermomechanical Properties of YSZ and CSZ TBC Coatings Undergoing Thermal Cycling, J. Alloy. Compd., 2017, 727, p 1057-1066.

    Article  CAS  Google Scholar 

  44. W. Mao, J. Wan, C. Dai, J. Ding, Y. Zhang, Y. Zhou, and C. Lu, Evaluation of Microhardness, Fracture Toughness and Residual Stress in a Thermal Barrier Coating System: a Modified Vickers Indentation TechniquE, Surf. Coat. Technol., 2012, 206(21), p 4455-4461.

    Article  CAS  Google Scholar 

  45. J. Sobral, T. Clyne, R. Rezk, and A. Markaki, Control Over Fine Scale Terrace Structures Induced on Polycrystalline Pd by Simple Heat Treatments in Air, Surf. Coat. Technol., 2017, 326, p 327-335.

    Article  CAS  Google Scholar 

  46. E. Husson, C. Proust, P. Gillet, and J. Itie, Phase Transitions in Yttrium Oxide at High Pressure Studied by Raman Spectroscopy, Mater. Res. Bull., 1999, 34(12-13), p 2085-2092.

    Article  CAS  Google Scholar 

  47. J. Madejski, Solidification of Droplets on a Cold Surface, Int. J. Heat Mass Transf., 1976, 19(9), p 1009-1013.

    Article  Google Scholar 

  48. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4(11), p 1657.

    Article  CAS  Google Scholar 

  49. G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metall. and Mater. Trans. B., 1991, 22(6), p 901-914.

    Article  Google Scholar 

  50. M. Bertagnolli, M. Marchese, and G. Jacucci, Modeling of Particles Impacting on a Rigid Substrate Under Plasma Spraying Conditions, J. Therm. Spray Technol., 1995, 4(1), p 41-49.

    Article  CAS  Google Scholar 

  51. T. Yoshida, T. Okada, H. Hamatani, and H. Kumaoka, Integrated Fabrication Process for Solid Oxide Fuel Cells Using Novel Plasma Spraying, Plasma Sour. Sci. Technol., 1992, 1(3), p 195.

    Article  CAS  Google Scholar 

  52. H. Zhang, Theoretical Analysis of Spreading and Solidification of Molten Droplet During Thermal Spray Deposition, Int. J. Heat Mass Trans., 1999, 42(14), p 2499-2508.

    Article  CAS  Google Scholar 

  53. R. Dhiman and S. Chandra, Freezing-Induced Splashing during Impact of Molten Metal Droplets with High Weber Numbers, Int. J. Heat Mass. Transf., 2005, 48(25-26), p 5625-5638.

    Article  CAS  Google Scholar 

  54. P. Wei, Z. Wei, S. Li, C. Tan, and J. Du, Splat Formation during Plasma Spraying for 8 mol% Yttria-Stabilized Zirconia Droplets Impacting on Stainless Steel Substrate, Appl. Surf. Sci., 2014, 321, p 538-547.

    Article  CAS  Google Scholar 

  55. Y. Chen, S.R. Bakshi, and A. Agarwal, Intersplat Friction Force and Splat Sliding in a Plasma-Sprayed Aluminum Alloy Coating during Nanoindentation and Microindentation, ACS Appl. Mater. Interfaces., 2009, 1(2), p 235-238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. B. Venkatraman, Director, IGCAR, Dr. R. Divakar, Director, MMG, IGCAR and Dr. John Philip, Associate Director, MCG, IGCAR, for their constant support. The authors acknowledge Dr. S Amirthapandian and Dr. P Jagadeesan, Materials Physics Division, IGCAR, for SEM analysis and Dr. R Mythili and Mrs. T. Sreepriya, Physical Metallurgy Division, IGCAR, for instrumented nanoindentation analysis. Authors also acknowledge Mr. Yogesh Kumar, Corrosion Science and Technology Division, IGCAR, for assistance in plasma spray coating. Ms. Madhura Bellippady expresses her sincere gratitude to DAE for providing a fellowship for carrying out this study, which will form part of her PhD thesis work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ningshen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhura, B., Patel, P.R., Vetrivendan, E. et al. Experimental Study and Numerical Simulation of Y2O3 Coatings Deposited by Plasma Spraying at Different Torch Powers. J Therm Spray Tech 32, 2661–2682 (2023). https://doi.org/10.1007/s11666-023-01653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01653-8

Keywords

Navigation