Skip to main content
Log in

Characterization and Early-Stage Oxidation Behavior of CoNiCrAlY/Nano-Al2O3 Composite Coatings Using Satellited Powders Deposited by HVOF and LPPS Processes

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, satellited CoNiCrAlY/nano-Al2O3 feedstocks with 2 wt.% of oxide nanoparticles and pure CoNiCrAlY powder were deposited by the HVOF and LPPS processes on Inconel738 superalloy substrates. Microstructure and phase composition of powders and coatings were characterized by FESEM and XRD, respectively. The early-stage oxidation test was done at 1050 °C for 10 min. The results showed that the satelliting seems to be a promising method to produce nano-particles dispersed composite powders suitable for thermal spraying. Adding α-Al2O3 nanoparticles increased the porosity of the HVOF and LPPS coatings from 0.6 to 1 and from 2 to 2.45 vol.%, respectively. In the HVOF-sprayed CoNiCrAlY/nano-Al2O3, coating including γ-Co,Ni,Cr, β-(Co,Ni)Al, and α-Al2O3, the growth of non-protective NiO and spinel oxides was significantly limited and a dense α-Al2O3 oxide layer was promoted after the early-stage of oxidation. However, for the LPPS-deposited CoNiCrAlY/nano-Al2O3 coating consisting of γ-Co,Ni,Cr and γ-Al2O3, after oxidation, the presence of Al-rich oxides like θ-Al2O3 whiskers and porous transformed α-Al2O3 were observed on the coating. The correlation between microstructure, phase composition, and early-stage oxidation was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U. Dragos, M. Gabriela, B. Waltraut, and C. Ioan, Improvement of the Oxidation Behavior of Electron Beam Remelted MCrAlY Coatings, Solid State Sci., 2005, 7, p 459–464. https://doi.org/10.1016/j.solidstatesciences.2005.01.003

    Article  CAS  Google Scholar 

  2. J.G. Thakare, C. Pandey, M.M. Mahapatra, and R.S. Mulik, Thermal Barrier Coatings—A State of the Art Review, Met. Mater. Int., 2021, 27, p 1947–1968. https://doi.org/10.1007/s12540-020-00705-w

    Article  Google Scholar 

  3. A. Khezrloo, M. Afshar, S. Baghshahi, and A.A. Amadeh, Optimizing Nanostructured Yttria-Stabilized Zirconia Electrophoretic Coatings on MCrAlY Bond-Coated Inconel 738LC Superalloy, Trans. Indian Ceram. Soc., 2023 https://doi.org/10.1080/0371750X.2022.2152369

    Article  Google Scholar 

  4. F. Ghadami, A.S. Aghdam, and S. Ghadami, Microstructural Characteristics and Oxidation Behavior of the Modified MCrAlX Coatings: A Critical Review, Vacuum., 2021, 185, p 109980. https://doi.org/10.1016/j.vacuum.2020.109980

    Article  CAS  Google Scholar 

  5. M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1, p 117–132. https://doi.org/10.3390/coatings1020117

    Article  CAS  Google Scholar 

  6. M. Mohammadi, S. Javadpour, S.A. Jahromi, K. Shirvani, and A. Kobayashi, Characterization and Hot Corrosion Performance of LVPS and HVOF-CoNiCrAlYSi Coatings, Vacuum, 2012, 86, p 1458–1464. https://doi.org/10.1016/j.vacuum.2012.02.030

    Article  CAS  Google Scholar 

  7. A.C. Karaoglanli, Y. Ozgurluk, and K.M. Doleker, Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Coatings Produced by APS, SSAPS, D-gun, HVOF and CGDS Techniques, Vacuum., 2020, 180, p 109609. https://doi.org/10.1016/j.vacuum.2020.109609

    Article  CAS  Google Scholar 

  8. A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, and G.A. Rizzi, Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma Spray, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy, J Therm. Spray Technol., 2003, 12, p 504–507. https://doi.org/10.1361/105996303772082242

    Article  CAS  Google Scholar 

  9. M. Shibata, S. Kuroda, H. Murakami, M. Ode, M. Watanabe, and Y. Sakamoto, Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Bond Coatings Prepared by Different Thermal Spray Processes, Mater. Trans., 2006, 47, p 1638–1642. https://doi.org/10.2320/matertrans.47.1638

    Article  CAS  Google Scholar 

  10. J.A. Cabral-Miramontes, C. Gaona-Tiburcio, F. Almeraya-Calderón, F.H. Estupiñan-Lopez, G.K. Pedraza-Basulto, and C.A. Poblano-Salas, Parameter Studies on High-Velocity oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry, Int. J. Corros., 2014 https://doi.org/10.1155/2014/703806

    Article  Google Scholar 

  11. H. Vasudev, L. Thakur, H. Singh, and A. Bansal, A Study on Processing and Hot Corrosion Behaviour of HVOF Sprayed Inconel718-nano Al2O3 Coatings, Mater. Today Commun., 2020, 25, p 101626. https://doi.org/10.1016/j.mtcomm.2020.101626

    Article  CAS  Google Scholar 

  12. P. Zamani, R. Ghasemi, S. Torabi, B. Mirjani, M. Memari, M. Alizadeh, and H. Khaledi, Characterization and High-Temperature Fretting Wear Resistance of HVOF-Sprayed Cr3C2-NiCr, CoCrWC and CoCrWNiC Hardfacing Coatings, J. Therm. Spray Technol., 2022, 31, p 2157–2171. https://doi.org/10.1007/s11666-022-01431-y

    Article  CAS  Google Scholar 

  13. M. Bai, B. Song, L. Reddy, T. Hussain, HVOF Thermal Sprayed MCrAlY-Alumina Composite Coatings for High Temperature Applications. In ITSC2018 (pp. 16-23). ASM International. 2018. https://doi.org/10.31399/asm.cp.itsc2018p0016.

  14. P. Zamani and Z. Valefi, Comparative Investigation of Microstructure and High-Temperature Oxidation Resistance of High-Velocity Oxy-Fuel Sprayed CoNiCrAlY/Nano-Al2O3 Composite Coatings Using Satellited Powders, Int. J. Miner. Metall. Mater., 2023, 30, p 1779–1791. https://doi.org/10.1007/s12613-023-2630-9

    Article  CAS  Google Scholar 

  15. A. Zakeri, E. Bahmani, A. Sabour, and Rouh Aghdam, Impact of MCrAlY Feedstock Powder Modification by High-Energy Ball Milling on the Microstructure and High-Temperature Oxidation Performance of HVOF-Sprayed Coatings Surf, Coat. Technol., 2020, 395, p 125935. https://doi.org/10.1016/j.surfcoat.2020.125935

    Article  CAS  Google Scholar 

  16. T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers, Effect of Test Atmosphere Composition on High-Temperature Oxidation Behaviour of CoNiCrAlY Coatings Produced from Conventional and ODS Powders, Mater. High Temp., 2018, 35, p 97–107. https://doi.org/10.1080/09603409.2017.1389422

    Article  CAS  Google Scholar 

  17. M. Bai, B. Song, L. Reddy, and T. Hussain, Preparation of MCrAlY– Al2O3 Composite Coatings with Enhanced Oxidation Resistance Through a Novel Powder Manufacturing Process, J. Therm. Spray Technol., 2019, 28, p 433–443. https://doi.org/10.1007/s11666-019-00830-y

    Article  CAS  Google Scholar 

  18. J. Bergholz, B.A. Pint, K.A. Unocic, and R. Vaßen, Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content, J. Therm. Spray Technol., 2017, 26, p 868–879. https://doi.org/10.1007/s11666-017-0550-9

    Article  CAS  Google Scholar 

  19. H. Vasudev, L. Thakur, H. Singh, and A. Bansal, Effect of Addition of Al2O3 on the High-Temperature Solid Particle Erosion Behaviour of HVOF Sprayed Inconel-718 Coatings, Mater. Today Commun., 2022, 30, p 103017. https://doi.org/10.1016/j.mtcomm.2021.103017

    Article  CAS  Google Scholar 

  20. I.G. Wright, Dispersed Phases in Powder Metallurgically-Produced Alloys: Contributions to High-Temperature Oxidation Behavior, Mater. High Temp., 2022, 1, p 1–28. https://doi.org/10.1080/09603409.2022.2113709

    Article  CAS  Google Scholar 

  21. K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, and A.T. Clare, Cold Sprayed Metal-Ceramic Coatings Using Satellited Powders, Mater. Lett., 2017, 198, p 184–187. https://doi.org/10.1016/j.matlet.2017.03.175

    Article  CAS  Google Scholar 

  22. M. Simonelli, N.T. Aboulkhair, P. Cohen, J.W. Murray, A.T. Clare, C. Tuck, and R.J. Hague, A comparison of Ti-6Al-4V In-Situ Alloying in Selective Laser Melting Using Simply-Mixed and Satellited Powder Blend Feedstocks, Mater. Charact., 2018, 143, p 118–126. https://doi.org/10.1016/j.matchar.2018.05.039

    Article  CAS  Google Scholar 

  23. A. Clare and A. Kennedy, Additive Manufacturing, U.S. Patent Application 15/022,344, filed September 29, 2016.

  24. H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, and A.T. Clare, Direct Metal Deposition of TiB2/AlSi10Mg Composites Using Satellited Powders, Mater. Lett., 2018, 214, p 123–126. https://doi.org/10.1016/j.matchar.2018.05.039

    Article  CAS  Google Scholar 

  25. K.E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components, Wiley, New York, 2006.

    Book  Google Scholar 

  26. M. I. Boulos, P. L. Fauchais, E. Pfender, Handbook of Thermal Plasmas, Springer International Publishing, New York, NY, 2019. https://doi.org/10.1007/978-3-319-12183-3 .

  27. H. Chen, Effects of Internal Oxide Contents on the Oxidation and β-Phase Depletion Behavior in HOVF CoNiCrAlY Coatings, Surf. Coat. Technol., 2021, 424, p 127666. https://doi.org/10.1016/j.surfcoat.2021.127666

    Article  CAS  Google Scholar 

  28. H. Aghajani, Z. Valefi, and P. Zamani, Phase Composition, Microstructure, Mechanical Properties, and Wear Performance of Nanostructured Al2O3 and Al2O3-Y2O3 Coatings Deposited by Plasma Spraying, Appl. Surf. Sci., 2022, 585, p 152754. https://doi.org/10.1016/j.surfcoat.2017.03.022

    Article  CAS  Google Scholar 

  29. S. Dhakar and K. Chatterjee, Sabiruddin, Phase Stabilization of Plasma-Sprayed Alumina Coatings by Spraying Mechanically Blended Alumina–Chromia Powders, Mater. Manuf. Process., 2017, 32, p 355–364. https://doi.org/10.1080/10426914.2016.1198028

    Article  CAS  Google Scholar 

  30. T. Diana, W. Brandl, and U. Köster, Studies on the Transient Stage of Oxidation of VPS and HVOF Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1999, 120, p 8–15. https://doi.org/10.1016/S0257-8972(99)00332-1

    Article  Google Scholar 

  31. Y. Hosseini, A. Kermanpur, F. Ashrafizadeh, and A. Keyvani, Oxidation Behavior of Overlay NiCoCrAlY and Diffusion Aluminide Coatings Deposited on a Directionally Solidified Nickel-Based Superalloy: A Comparative Study, JOM., 2023, 75, p 64–75. https://doi.org/10.1007/s11837-022-05575-8

    Article  CAS  Google Scholar 

  32. M. Mohammadi, S. Javadpour, S.A.J. Jahromi, and K. Shirvani, Characterization and Hot Corrosion Performance of LVPS and HVOF-CoNiCrAlYSi Coatings, Vacuum, 2012, 86, p 1458–1464. https://doi.org/10.1016/j.vacuum.2012.02.030

    Article  CAS  Google Scholar 

  33. J. Sun, S.B. Liu, W. Li, H.J. Yu, and S.M. Jiang, Hot Corrosion Behaviour of Pt Modified Aluminized NiCrAlYSi Coating on a Ni-Based Single Crystal Superalloy, Corros. Sci., 2019, 149, p 207–217. https://doi.org/10.1016/j.corsci.2019.01.014

    Article  CAS  Google Scholar 

  34. S. Lamouri, M. Hamidouche, and N. Bouaouadja, Control of the γ-Alumina to α-Alumina Phase Transformation for an Optimized Alumina Densification, Boletín de la Sociedad Española de cerámica y vidrio., 2017, 56, p 47–54. https://doi.org/10.1016/j.bsecv.2016.10.001

    Article  CAS  Google Scholar 

  35. X. Ren and F. Wang, High-Temperature Oxidation and Hot-Corrosion Behavior of a Sputtered NiCrAlY Coating With and Without Aluminizing, Surf. Coat. Technol., 2006, 201, p 30–37. https://doi.org/10.1016/j.surfcoat.2005.10.042

    Article  CAS  Google Scholar 

  36. P. Bowen and C. Carry, From Powders to Sintered Pieces: Forming, Transformations and Sintering of Nanostructured Ceramic Oxides, Powder Technol., 2002, 128, p 248–255. https://doi.org/10.1016/S0032-5910(02)00183-3

    Article  CAS  Google Scholar 

  37. B.A. Pint, Experimental Observations in Support of the Dynamic-Segregation Theory to Explain the Reactive-Element Effect, Oxid. Met., 1996, 45, p 1–37. https://doi.org/10.1007/BF01046818

    Article  CAS  Google Scholar 

  38. S. Shabani, S.M. Mirkazemi, H. Rezaie, Y. Vahidshad, and S. Trasatti, A Comparative Study on the Thermal Stability, Textural, and Structural Properties of Mesostructured γ-Al2O3 Granules in the Presence of La, Sn, and B Additives, Ceram. Int., 2022, 48, p 6638–6648. https://doi.org/10.1016/j.ceramint.2021.11.213

    Article  CAS  Google Scholar 

  39. W. Sloof and T. Nijdam, On the High-Temperature oxidaTion of MCrAlY Coatings, Int. J. Mater. Res., 2009, 100, p 1318–1330. https://doi.org/10.3139/146.110201

    Article  CAS  Google Scholar 

  40. N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Chapter 5: Oxidation of Alloys, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Zamani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, P., Valefi, Z. Characterization and Early-Stage Oxidation Behavior of CoNiCrAlY/Nano-Al2O3 Composite Coatings Using Satellited Powders Deposited by HVOF and LPPS Processes. J Therm Spray Tech 32, 2525–2538 (2023). https://doi.org/10.1007/s11666-023-01650-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01650-x

Keywords

Navigation