Skip to main content
Log in

Continuous Wire Electrical Explosion Spraying for Porous Coating Deposition Inside a Narrow Tube

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Heat exchange tubes require a porous inner surface to maximize their boiling performance. However, in addition to the geometric limitations of long and narrow tubes, producing porous inner surfaces remains challenging for conventional coating technologies. To prepare porous coatings on the inner surface of narrow tubes, a novel continuous wire electrical explosion spraying device was developed. The charging voltage influenced the overheat factor and expansion velocity of the aluminum wire, which simultaneously affected the size, temperature, and velocity of the explosive products deposited inside medium-carbon steel tubes. These effects ultimately impacted the flattening degree and microstructure of the deposited material. Experiments revealed that the porosity, wettability, adhesion, and rate of increase in coating surface area are all superior at a charging voltage of 12.0 kV. Thus, coatings prepared at this charging voltage can effectively improve the heat transfer of the tube. Our study also provides insights into the effects of charging voltage on the microstructure of deposited film, which may be extended to the coatings of other complex components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.J. Modi and M.K. Rathod, Experimental Investigation of Heat Transfer Enhancement and Pressure Drop of Fin-and-Circular Tube Heat Exchangers with Modified Rectangular Winglet Vortex Generator, Int. J. Heat Mass Transf., 2022, 189, p 122742.

    Article  Google Scholar 

  2. M.M. Mahmoud and T.G. Karayiannis, Pool Boiling Review: Part II—Heat Transfer Enhancement, Therm. Sci. Eng. Prog., 2021, 25, p 101023.

    Article  CAS  Google Scholar 

  3. C.M. Patil and S.G. Kandlikar, Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels, Int. J. Heat Mass Transf., 2014, 79, p 816-828.

    Article  Google Scholar 

  4. G. Dhadda, M. Hamed, and P. Koshy, Electrical Discharge Surface Texturing for Enhanced Pool Boiling Heat Transfer, J. Mater. Process. Technol., 2021, 293, p 117083.

    Article  CAS  Google Scholar 

  5. V.V. Nirgude and S.K. Sahu, Heat Transfer Enhancement in nucleate Pool Boiling Using Laser Processed Surfaces: Effect of Laser Wavelength and Power Variation, Thermochim. Acta, 2020, 694, p 178788.

    Article  CAS  Google Scholar 

  6. D. Deng, W. Wan, J. Feng, Q. Huang, Y. Qin, and Y. Xie, Comparative Experimental Study on Pool Boiling Performance of Porous Coating and Solid Structures with Reentrant Channels, Appl. Therm. Eng., 2016, 107, p 420-430.

    Article  CAS  Google Scholar 

  7. A.M. Gheitaghy, H. Saffari, D. Ghasimi, and A. Ghasemi, Effect of Electrolyte Temperature on Porous Electrodeposited Copper for Pool Boiling Enhancement, Appl. Therm. Eng., 2017, 113, p 1097-1106.

    Article  CAS  Google Scholar 

  8. X. Ji, J. Xu, Z. Zhao, and W. Yang, Pool Boiling Heat Transfer on Uniform and Non-Uniform Porous Coating Surfaces, Exp. Therm. Fluid Sci., 2013, 48, p 198-212.

    Article  CAS  Google Scholar 

  9. D.-C. Mo, S. Yang, J.-L. Luo, Y.-Q. Wang, and S.-S. Lyu, Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transf., 2020, 157, p 119867.

    Article  CAS  Google Scholar 

  10. S.K. Singh and D. Sharma, Review of Pool and Flow Boiling Heat Transfer Enhancement Through Surface Modification, Int. J. Heat Mass Transf., 2021, 181, p 122020.

    Article  CAS  Google Scholar 

  11. M. Aral and T. Suidzu, Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade, J. Therm. Spray Technol., 2012, 22(5), p 690-698.

    Google Scholar 

  12. Y.Y. Jiang, W.C. Wang, D. Wang, and B.X. Wang, Boiling Heat Transfer on Machined Porous Surface with Structure Optimization, Int. J. Heat Mass Transf., 2001, 44, p 443-456.

    Article  CAS  Google Scholar 

  13. C.M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, and S. Ndao, Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces, Int. J. Heat Mass Transf., 2015, 82, p 109-116.

    Article  Google Scholar 

  14. A. Kilicaslan, O. Zabeida, E. Bousser, T. Schmitt, J.E. Klemberg-Sapieha, and L. Martinu, Hard Titanium Nitride Coating Deposition Inside Narrow Tubes Using Pulsed DC PECVD Processes, Surf. Coat. Technol., 2019, 377, p 124894.

    Article  CAS  Google Scholar 

  15. L. Kong, M. Zhang, X. Wei, Y. Wang, G. Zhang, and Z. Wu, Observation of Uniformity of Diamond-like carbon Coatings Utilizing Hollow Cathode Discharges Inside Metal Tubes, Surf. Coat. Technol., 2019, 375, p 123-131.

    Article  CAS  Google Scholar 

  16. E.J.D.M. Pillaca, M.A. Ramírez, J.M. Gutierrez Bernal, D.C. Lugo, and V.J. Trava-Airoldi, DLC Deposition Inside of a Long Tube by Using the Pulsed-DC PECVD Process, Surf. Coat. Technol., 2019, 359, p 55-61.

    Article  CAS  Google Scholar 

  17. F. Han, L. Zhu, Z.-H. Liu, and L. Gong, The Study of Refractory Ta10W and Non-Refractory Ni60A Coatings Deposited by Wire Electrical Explosion Spraying, Surf. Coat. Technol., 2019, 374, p 44-51.

    Article  CAS  Google Scholar 

  18. H. Zhou, X. Wang, C. He, Z. Li, and L. Zhu, Tantalum Coatings Deposited on Ti6Al4V Alloy by Self-Designed Wire Electrical Explosion Spraying, J. Therm. Spray Technol., 2022, 31(3), p 636-643.

    Article  Google Scholar 

  19. A.I. Ryakhovskiy, V.I. Antonov, and N.V. Kalinin, The EOS Choice Effect on the Simulated Results Obtained for an Underwater Electrical Explosion of Conductors, St. Petersburg Polytech. Uni. J.: Phys. Math., 2017, 3(3), p 192-198.

    Google Scholar 

  20. D. Romanov, S. Moskovskii, S. Konovalov, K. Sosnin, V. Gromov, and Y. Ivanov, Improvement of Copper Alloy Properties in Electro-Explosive Spraying of ZnO-Ag Coatings Resistant to Electrical Erosion, J. Market. Res., 2019, 8(6), p 5515-5523.

    CAS  Google Scholar 

  21. K. Wathanyu, K. Tuchinda, S. Daopiset, S. Sirivisoot, J. Kondas, and C. Bauer, Study of the Properties of Titanium Porous Coating with Different Porosity Gradients on 316L Stainless Steel by a Cold Spray Process, J. Therm. Spray Technol., 2022, 31(3), p 545-558.

    Article  Google Scholar 

  22. Q. Li, Q.-Z. Song, J.-Z. Wang, and Y.-X. Duo, Effect of Charging Energy on Droplet Diameters and Properties of High-Carbon Steel Coatings Sprayed by Wire Explosion Spraying, Surf. Coat. Technol., 2011, 206(2-3), p 202-207.

    Article  CAS  Google Scholar 

  23. X.-B. Zou, Z.-G. Mao, X.-X. Wang, and W.-H. Jiang, Nanopowder Production by Gas-Embedded Electrical Explosion of Wire, Chin. Phys. B, 2013, 22(4), p 045206.

    Article  Google Scholar 

  24. X. Wang, D. Fadda, J.C. Godinez, J. Lee, and S.M. You, Evaporation of Highly Wetting Fluids on Aluminum Microporous Coating, Int. J. Heat Mass Transf., 2020, 163, p 120451.

    Article  CAS  Google Scholar 

  25. W. Li, R. Dai, M. Zeng, and Q. Wang, Review of Two Types of Surface Modification on Pool Boiling Enhancement: Passive and Active, Renew Sustain Energy Rev., 2020, 130, p 109926.

    Article  CAS  Google Scholar 

  26. A.M. Rishi, S.G. Kandlikar, and A. Gupta, Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer, Int. J. Heat Mass Transf., 2019, 132, p 462-472.

    Article  CAS  Google Scholar 

  27. B. Parizad Benam, A.K. Sadaghiani, V. Yağcı, M. Parlak, K. Sefiane, and A. Koşar, Review on high heat flux flow boiling of refrigerants and water for electronics cooling, Int. J. Heat Mass Transf., 2021, 180, p 121787.

    Article  CAS  Google Scholar 

  28. S. Sahoo, A.K. Saxena, T.C. Kaushik, and S.C. Gupta, Effect of energy deposition rate on plasma expansion characteristics and nanoparticle generation by electrical explosion of conductors, High Energy Density Phys., 2015, 17, p 270-276.

    Article  CAS  Google Scholar 

  29. T.K. Sindhu, R. Sarathi, and S.R. Chakravarthy, Understanding Nanoparticle Formation by a Wire Explosion Process Through Experimental and Modelling Studies, Nanotechnology, 2008, 19(2), p 025703.

    Article  CAS  Google Scholar 

  30. A. Pervikov, M. Lerner, and K. Krukovskii, Structural Characteristics of Copper Nanoparticles Produced by the Electric Explosion of Wires with Different Structures of Metal Grains, Curr. Appl. Phys., 2017, 17(2), p 201-206.

    Article  Google Scholar 

  31. Y.A. Kotov, Electric Explosion of Wires as a Mehod for Preparation of Nanopowders, J. Nanopart. Res., 2003, 5, p 539-550.

    Article  Google Scholar 

  32. W. Li, C. Cao, and S. Yin, Solid-State Cold Spraying of Ti and Its Alloys: A Literature Review, Prog. Mater. Sci., 2020, 110, p 100633.

    Article  CAS  Google Scholar 

  33. A.A. Tiamiyu and C.A. Schuh, Particle Flattening During Cold Spray: Mechanistic Regimes Revealed by Single Particle Impact Tests, Surf. Coat. Technol., 2020, 403, p 126386.

    Article  CAS  Google Scholar 

  34. S. Goutier, M. Vardelle, and P. Fauchais, Comparison Between Metallic and Ceramic Splats: Influence of Viscosity and Kinetic Energy on the Particle Flattening, Surf. Coat. Technol., 2013, 235, p 657-668.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51765038) and the Postdoctoral Program at Station of Gansu (Grant No. 23JRRA762).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhou or Liang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, W., Wang, X. et al. Continuous Wire Electrical Explosion Spraying for Porous Coating Deposition Inside a Narrow Tube. J Therm Spray Tech 32, 2283–2294 (2023). https://doi.org/10.1007/s11666-023-01614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01614-1

Keywords

Navigation