Skip to main content

Advertisement

Log in

Solubility, Mechanical and Biological Properties of Fluoridated Hydroxyapatite/Calcium Silicate Gradient Coatings for Orthopedic and Dental Applications

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Functionally graded fluoridated hydroxyapatite/calcium silicate (FHA/CS) bioceramic coatings (FGCs) were designed and prepared using suspension plasma spraying technology in order to improve the chemical stability and bonding strength of single HA coatings. Phase compositions, microstructures, solubility, mechanical and biological properties of the FGCs were investigated. The results showed that the coatings had a continuous compositional gradient along the cross section without a distinguishable interface. The amount of CS gradually decreased, and the amount of FHA gradually increased from the substrate to the FGC surface. The bonding strength of the FGCs was improved due to the design of gradient structure and reached 29.2 MPa, which was 20% higher than that of the pure FHA coating. Dissolution behavior of the FGCs was evaluated by immersing samples in citric acid-modified PBS solution (pH = 4.0), and the solubility resistance of the FGCs was improved due to the presence of the surface FHA layer resulting in a lower Ca2+ ion and Si4+ ion release. In addition, the FGCs showed a similar apatite-forming ability and cellular response in vitro to FHA coatings, suggesting a potential competitive use for coating bone implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13, p 94-117

    CAS  Google Scholar 

  2. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: a Review, J. Biomed. Mater. Res., 2010, 58, p 570-592

    Google Scholar 

  3. J.L. Ong, D.L. Carnes, and K. Bessho, Evaluation of Titanium Plasma-Sprayed and Plasma-Sprayed Hydroxyapatite Implants in Vivo, Biomaterials, 2004, 25, p 4601-4606

    CAS  Google Scholar 

  4. U. Ripamonti, L.C. Roden, and L.F. Renton, Osteoinductive Hydroxyapatite-Coated Titanium Implants, Biomaterials, 2012, 33, p 3813-3823

    CAS  Google Scholar 

  5. Y.C. Yang and E. Chang, Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti-6Al-4 V Substrate, Biomaterials, 2001, 22, p 1827-1836

    CAS  Google Scholar 

  6. Y.C. Yang and E. Chang, Measurements of Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy, Surf. Coat. Technol., 2005, 190, p 122-131

    CAS  Google Scholar 

  7. Y.C. Yang, E. Chang, B.H. Hwang, and S.Y. Lee, Biaxial Residual Stress States of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2000, 21, p 1327-1337

    CAS  Google Scholar 

  8. L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet, and P. Frayssinet, Degradation of Hydroxylapatite, Fluorapatite, and Fluorhydroxyapatite Coatings of Dental Implants in Dogs, J. Biomed. Mater. Res., 1999, 48, p 224-234

    CAS  Google Scholar 

  9. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasma Sprayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55

    CAS  Google Scholar 

  10. V. Cannillo, L. Lusvarghi, and A. Sola, Production and Characterization of Plasma-Sprayed TiO2-Hydroxyapatite Functionally Graded Coatings, J. Eur. Ceram. Soc., 2008, 8, p 2161-2169

    Google Scholar 

  11. R. Kumaria and J.D. Majumdar, Studies on Corrosion Resistance and Bioactivity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4 V) and the Same After Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943

    Google Scholar 

  12. X. Pang and Y. Huang, Physical Properties of Nano-HAs/ZrO2 Coating on Surface of Titanium Materials Used in Dental-Implants and Its Biological Compatibility, J. Nanosci. Nanotechnol., 2012, 12, p 902-910

    CAS  Google Scholar 

  13. A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, and V. Cannillo, Suspension Plasma Spraying of Optimised Functionally Graded Coatings of Bioactive Glass/Hydroxyapatite, Surf. Coat. Technol., 2013, 236, p 118-126

    CAS  Google Scholar 

  14. W. Xue, X. Liu, X. Zheng, and C. Ding, In Vivo Evaluation of Plasma-Sprayed Wollastonite Coating, Biomaterials, 2005, 26, p 3455-3460

    CAS  Google Scholar 

  15. X. Lu, K. Li, Y. Xie, L. Huang, and X. Zheng, Chemical Stability and Osteogenic Activity of Plasma-Sprayed Boron-Modified Calcium Silicate-Based Coatings, J. Mater. Sci. Mater. Med., 2016, 27, p 166

    Google Scholar 

  16. X. Liu and C. Ding, Apatite Formed on the Surface of Plasma Sprayed Wollastonite Coating Immersed in Simulated Body Fluid, Biomaterials, 2001, 22, p 2007-2012

    CAS  Google Scholar 

  17. J.R. Henstock, L.T. Canham, and S.I. Anderson, Silicon: the Evolution of Its Use in Biomaterials, Acta Biomater., 2015, 11, p 17-26

    CAS  Google Scholar 

  18. X. Liu and C. Ding, Plasma Sprayed Wollastonite/TiO2 Composite Coatings on Titanium Alloys, Biomaterials, 2002, 23, p 4065-4077

    CAS  Google Scholar 

  19. S. Zhou, Y. Bai, W. Ma, and C. Chen, Suspension Plasma-Sprayed Fluoridated Hydroxyapatite/Calcium Silicate Composite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2019, 28, p 1028-1038

    Google Scholar 

  20. S. Ni and J. Chang, In Vitro Degradation, Bioactivity, and Cytocompatibility of Calcium Silicate, Dimagnesium Silicate, and Tricalcium Phosphate Bioceramics, J. Biomater. Appl., 2009, 24, p 139-158

    CAS  Google Scholar 

  21. P. Nasker, M. Mukherjee, S. Kant, and M. Das, Fluorine Substituted Nano Hydroxyapatite: Synthesis, Bio-activity and Antibacterial Response Study, Ceram. Int., 2018, 44, p 22008-22013

    CAS  Google Scholar 

  22. H. Eslami, M. Solatihashjin, and M. Tahriri, The Comparison of Powder Characteristics and Physicochemical, Mechanical and Biological Properties Between Nanostructure Ceramics of Hydroxyapatite and Fluoridated Hydroxyapatite, Mater. Sci. Eng., C, 2009, 29, p 1387-1398

    CAS  Google Scholar 

  23. Y. Bai, S. Zhou, L. Shi, W. Ma, and C. Liu, Fabrication and Characterization of Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2018, 27, p 1322-1332

    CAS  Google Scholar 

  24. Y. Bai, B. Chi, W. Ma, and C. Liu, Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings: Effects of Spraying Power on Microstructure, Chemical Stability and Antibacterial Activity, Surf. Coat. Technol., 2019, 361, p 222-230

    CAS  Google Scholar 

  25. I. Bieloshapka, P. Jiricek, M. Vorokhta, E. Tomsik, A. Rednyk, R. Perekrestov, K. Jurek, E. Ukraintsev, K. Hruska, and O. Romanyuk, Pd-catalysts for DFAFC Prepared by Magnetron Sputtering, Appl. Surf. Sci., 2017, 419, p 838-846

    CAS  Google Scholar 

  26. G. Popescu-Pelin, F. Sima, L.E. Sima, C.N. Mihailescu, C. Luculescu, I. Iordache, M. Socol, G. Socol, and I.N. Mihailescu, Hydroxyapatite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation: Comparative Study, Appl. Surf. Sci., 2017, 418, p 580-588

    CAS  Google Scholar 

  27. Z. Ma, Y. Jiang, H. Xiao, B. Jiang, H. Zhang, M. Peng, G. Dong, X. Yu, and J. Yang, Sol-gel Preparation of Ag-Silica Nanocomposite with High Electrical Conductivity, Appl. Surf. Sci., 2018, 436, p 732-738

    CAS  Google Scholar 

  28. H. Farnoush, G. Aldıç, and H. Çimenoğlu, Functionally Graded HA-TiO2 Nanostructured Composite Coating on Ti-6Al-4 V Substrate via Electrophoretic Deposition, Surf. Coat. Technol., 2015, 265, p 7-15

    CAS  Google Scholar 

  29. E. Bannier, M. Vicent, E. Rayón, R. Benavente, M.D. Salvador, and E. Sánchez, Effect of TiO2 Addition on the Microstructure and Nanomechanical Properties of Al2O3 Suspension Plasma Sprayed Coatings, Appl. Surf. Sci., 2014, 316, p 141-146

    CAS  Google Scholar 

  30. C.J. Huang, K. Yang, N. Li, M.P. Planche, C. Verdy, H.L. Liao, and G. Montavon, Microstructures and Wear-Corrosion Performance of Vacuum Plasma Sprayed and Cold Gas Dynamic Sprayed Muntz Alloy Coatings, Surf. Coat. Technol., 2019, 371, p 172-184

    CAS  Google Scholar 

  31. L. Zhu, N. Zhang, B. Zhang, F. Sun, R. Bolot, M.-P. Planche, H. Liao, and C. Coddet, Very Low Pressure Plasma Sprayed Alumina and Yttria-Stabilized Zirconia Thin Dense Coatings Using a Modified Transferred Arc Plasma Torch, Appl. Surf. Sci., 2011, 258, p 1422-1428

    CAS  Google Scholar 

  32. C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun, and X. Li, Optimized Functionally Graded La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Suspension Plasma Spraying, J. Alloys. Compd., 2015, 649, p 1182-1190

    CAS  Google Scholar 

  33. Y. Zhu and X. Chen, Discussion on Crystallinity Calculated by the Technology of Peak Separation, Res. Explor. Lab., 2010, 3, p 41-43

    Google Scholar 

  34. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Weibull Modulus Of Nano-hardness and Elastic Modulus of Hydroxyapatite Coating, J. Mater. Sci., 2009, 44, p 4911-4918

    CAS  Google Scholar 

  35. A. Ganvir, R.F. Calinas, N. Markocsan, N. Curry, and S. Joshi, Experimental Visualization of Microstructure Evolution During Suspension Plasma Spraying of Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2019, 39, p 470-481

    CAS  Google Scholar 

  36. N. Curry, K.J. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5, p 338-356

    CAS  Google Scholar 

  37. M. Bhuiyan, R. Saidur, M. Amalina, R. Mostafizur, and A. Islam, Effect of Nanoparticles Concentration and their Sizes on Surface Tension of Nanofluids, Proc. Eng., 2015, 105, p 431-437

    CAS  Google Scholar 

  38. K.J. Roche and K.T. Stanton, Measurement of Fluoride Substitution in Precipitated Fluorhydroxyapatite Nanoparticles, J. Fluor. Chem., 2014, 161, p 102-109

    CAS  Google Scholar 

  39. L.M. Rodríguez-Lorenzo, J.N. Hart, and K.A. Gross, Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites, J. Phys. Chem. B., 2003, 107, p 8316-8320

    Google Scholar 

  40. G. Liu, X. Geng, H. Pang, X. Li, X. Li, P. Zhu, and C. Zhang, Deposition of Nanostructured Fluorine-Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray, J. Am. Ceram. Soc., 2016, 99, p 2899-2904

    CAS  Google Scholar 

  41. K. Cheng, S. Zhang, and W.J. Weng, The F Content in Sol-Gel Derived FHA Coatings: An XPS Study, Surf. Coat. Tech., 2005, 198, p 237-241

    CAS  Google Scholar 

  42. S. Kanhed, S. Awasthi, S. Goel, A. Pandey, R.K. Sharma, A. Upadhyay, and K. Balani, Porosity Distribution Affecting Mechanical and Biological Behaviour of Hydroxyapatite Bioceramic Composites, Ceram. Int., 2017, 43, p 10442-10449

    CAS  Google Scholar 

  43. A. Dey, A.K. Mukhopadhyay, S. Gangaharan, M.K. Sinha, and D. Basu, Characterization of Microplasma Sprayed Hydroxyapatite Coating, J. Thermal. Spray. Technol., 2009, 18, p 578-592

    CAS  Google Scholar 

  44. F. Zhou, Y. Wang, M. Liu, C. Deng, Y. Li, and Y. Wang, Bonding Strength and Thermal Conductivity of Novel Nanostructured La2(Zr0.75Ce0.25)2O7/8YSZ Coatings, Appl. Surf. Sci., 2019, 481, p 460-465

    CAS  Google Scholar 

  45. Y. Chen and X. Miao, Thermal and Chemical Stability of Fluorohydroxyapatite Ceramics with Different Fluorine Contents, Biomaterials, 2005, 26, p 1205-1210

    CAS  Google Scholar 

  46. K. Li, D. Hu, Y. Xie, L. Huang, and X. Zheng, Sr-Doped Nanowire Modification of Ca-Si-Based Coatings for Improved Osteogenic Activities and Reduced Inflammatory Reactions, Nanotechnology, 2018, 29, p 084001

    Google Scholar 

  47. X. Wang, Y. Zhou, L. Xia, C. Zhao, L. Chen, D. Yi, J. Chang, L. Huang, X. Zhen, H. Zhu, Y. Xie, Y. Xu, and K. Lin, Fabrication of Nano-structured Calcium Silicate Coatings with Enhanced Stability, Bioactivity and Osteogenic and Angiogenic Activity, Coll. Surf. B. Biointer., 2015, 126, p 358-366

    CAS  Google Scholar 

  48. H.M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, Process and Kinetics of Bonelike Apatite Formation on Sintered Hydroxyapatite in a Simulated Body Fluid, Biomaterials, 2005, 26, p 4366-4373

    CAS  Google Scholar 

  49. T. Kokubo, Bioactive Glass Ceramics: Properties and Applications, Biomaterials, 1991, 12, p 155-163

    CAS  Google Scholar 

  50. Y. Iimori, Y. Kameshima, K. Okada, and S. Hayashi, Comparative Study of Apatite Formation on CaSiO3 Ceramics in Simulated Body Fluids with Different Carbonate Concentrations, J. Mater. Sci. Mater. Med., 2005, 16, p 73-79

    CAS  Google Scholar 

  51. A. Wiegand, W. Buchalla, and T. Attin, Review on Fluoride-Releasing Restorative Materials-Fluoride Release and Uptake Characteristics, Antibacterial Activity and Influence on Caries Formation, Dent. Mater., 2007, 23, p 343-362

    CAS  Google Scholar 

  52. J.S. Joris and H.C. Amberg, Nature of Deficiency in Nonstoichiometric Hydroxyapatites. I. Catalytic Activity of Calcium and Strontium Hydroxyapatites, J. Phys. Chem., 1971, 75, p 3167-3171

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (51672136), National Science and Technology Major Project (2017-VII-0012-0108), Natural Science Foundation of Inner Mongolia Autonomous Region (2018MS05010), Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810), Research Innovation Program for Postgraduate of Inner Mongolia Autonomous Region (S2018111948Z) and Undergraduate Science and Technology Innovation Fund Project of Inner Mongolia University of Technology (2019-39-61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Bai, Y., Zhou, Sj. et al. Solubility, Mechanical and Biological Properties of Fluoridated Hydroxyapatite/Calcium Silicate Gradient Coatings for Orthopedic and Dental Applications. J Therm Spray Tech 29, 471–488 (2020). https://doi.org/10.1007/s11666-020-00981-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00981-3

Keywords

Navigation