Skip to main content
Log in

Enhanced Electrochemical and Tribological Properties of AZ91D Magnesium Alloy via Cold Spraying of Aluminum Alloy

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Magnesium (Mg) alloys have remarkable physical and mechanical properties for various aerospace applications. However, the high corrosion susceptibility and low wear resistance of Mg alloys restrict their wider use. To overcome these problems, 6061 Al alloy coatings were fabricated via the cold spraying process on the AZ91D Mg alloy substrate and a detailed comparative study on the wear and corrosion properties was carried out. The microstructure analysis of the compact coatings revealed low porosity with no phase change during the deposition process. The coatings showed improved corrosion resistance up to seven times as confirmed by potentiodynamic polarization and electrochemical impedance spectroscopy measurements in 3.5 wt.% NaCl aqueous solution. The as-deposited coatings were also compared with commercial bulk alloys of similar composition for their suitability to industrial applications. The tribological behavior of the coatings and substrate was investigated using tribometer. The wear resistance of the coatings improved more than two orders of magnitude as compared to the substrate. Abrasive and oxidative wear mechanisms were dominant in the coatings and substrate. The results showed that cold spraying of 6061 Al alloy on AZ91D Mg alloy could be an auspicious process to overcome the poor corrosion and wear resistance of this Mg alloy for practical industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.L. Mordike and T. Eber, Magnesium Properties Applications Potential, Mater. Sci. Eng., A, 2001, 302, p 37-45

    Google Scholar 

  2. H. Furuya, N. Kogiso, S. Matunaga, and K. Senda, Applications of Magnesium Alloys for Aerospace Structure Systems, Mater. Sci. Forum, 2000, 350–351, p 341-348

    Google Scholar 

  3. M. Kulekci, Magnesium and Its Alloys Applications in Automotive Industry, Int. J. Adv. Manuf. Technol., 2008, 39, p 851-865

    Google Scholar 

  4. Y. Ali, D. Qiu, B. Jiang, F. Pan, and M. Zhang, Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article, J. Alloys Compd., 2015, 619, p 639-651

    CAS  Google Scholar 

  5. B.A. Shaw and R.C. Wolfe, Corrosion Resistance of Magnesium alloys, ASM Handbook, Vol 13B, Corrosion: Materials (ASM International, Materials Park, 2005), pp. 205-227.

  6. I.J. Polmear, Introduction to Magnesium in ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, 1999, p 3-15

    Google Scholar 

  7. F.-S. Pan, M.-B. Yang, and X.-H. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol., 2016, 32, p 1211-1221

    Google Scholar 

  8. T.F. da Conceicao, N. Scharnagl, C. Blawert, W. Dietzel, and K.U. Kainer, Surface Modification of Magnesium Alloy AZ31 by Hydrofluoric Acid Treatment and Its Effect on the Corrosion Behavior, Thin Solid Films, 2010, 518(18), p 5209-5218

    Google Scholar 

  9. Y. Mizutani, S.J. Kim, R. Ichino, and M. Okido, Anodizing of Mg Alloys in Alkaline Solutions, Surf. Coat. Technol., 2003, 143, p 169-170

    Google Scholar 

  10. Ch Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant, and W. Dahl, Deposition of Aluminium on Magnesium by a CVD Process, Surf. Coat. Technol., 2004, 184, p 149-155

    CAS  Google Scholar 

  11. H. Pokhmurska, B. Wielage, T. Lampke, T. Grund, M. Student, and N. Chervinska, Post-Treatment of Thermal Spray Coatings on Magnesium, Surf. Coat. Technol., 2008, 202, p 4515-4524

    CAS  Google Scholar 

  12. S. Nezamdoust, D. Seifzadeh, and Z. Rajabalizadeh, PTMS/OH-MWCNT Sol–Gel Nanocomposite for Corrosion Protection of Magnesium Alloy, Surf. Coat. Technol., 2018, 35, p 228-240

    Google Scholar 

  13. Y.F. Zhang, C. Blawert, and S.W. Tang, Influence of Surface Pre-treatment on the Deposition and Corrosion Properties of Hydrophobic Coatings on a Magnesium Alloy, Corros. Sci., 2016, 112, p 483-494

    CAS  Google Scholar 

  14. F.E.T. Heakal, A.M. Fekry, and M.Z. Fatayerji, Influence of Halides on the Dissolution and Passivation Behavior of AZ91D Magnesium Alloy in Aqueous Solutions, Electrochim. Acta, 2009, 54, p 1545–1557

    Google Scholar 

  15. L. Liu, F.L. Yuan, and M.C. Zhao, Rare Earth Element Yttrium Modified Mg-Al-Zn alloy: Microstructure, Degradation Properties and Hardness, Materials, 2017, 10, p 477

    Google Scholar 

  16. R. Ambat and W. Zhou, Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters, Surf. Coat. Technol., 2009, 179(2–3), p 124-134

    Google Scholar 

  17. N.E. Mahallawy, Surface Treatment of Magnesium Alloys by Electroless Ni-P Plating Technique with Emphasis on Zinc Pretreatment: a Review, Key Eng. Mater., 2008, 384, p 241-262

    Google Scholar 

  18. J.E. Gray and B. Luan, Protective Coatings on Magnesium and Its alloys. A critical review, J. Alloys Compd., 2002, 336(1), p 88-113

    CAS  Google Scholar 

  19. T.V. Steenkiste and J.R. Smith, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Google Scholar 

  20. A. Alkhimov, V. Kosarev, and A. Papyrin, Gas-Dynamic Spraying. An Experimental Study of the Spraying Process, J. Appl. Mech. Tech. Phys., 1998, 39, p 318-323

    Google Scholar 

  21. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    CAS  Google Scholar 

  22. P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, Int. J. Adv. Manuf. Technol., 2014, 71(1), p 263-277

    Google Scholar 

  23. J. Villafuerte, Recent Trends in Cold Spray Technology: Looking at the Future, Surf. Eng., 2010, 26(6), p 393-394

    CAS  Google Scholar 

  24. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3–4), p 211-222

    CAS  Google Scholar 

  25. C. Vargel, Corrosion of Aluminum, Elsevier, Amsterdam, 2004

    Google Scholar 

  26. F. Czerwinski, Magnesium Alloys—Corrosion and Surface Treatments, InTech, Rijeka, 2011

    Google Scholar 

  27. J. Henao, A. Concustell, I.G. Cano, S. Dosta, N. Cinca, J.M. Guilemany, and T. Suhonen, Novel Al-Based Metallic Glass Coatings by Cold Gas Spray, Mater. Des., 2016, 94, p 253-261

    CAS  Google Scholar 

  28. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik, The Influence of Al2O3 Particle Morphology on the Coating Formation and Dry Sliding Wear Behavior of Cold Sprayed Al-Al2O3 Composites, Surf. Coat. Technol., 2015, 270, p 324-333

    CAS  Google Scholar 

  29. K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, and N. Munroe, Effect of Carrier Gases on Microstructural and Electrochemical Behavior of Cold-Sprayed 1100 Aluminum Coating, Surf. Coat. Technol., 2005, 195(2–3), p 272-279

    CAS  Google Scholar 

  30. H. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al + Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 207, p 155-162

    CAS  Google Scholar 

  31. D. Cong, Z. Li, Q. He, H. Chen, Z. Zhao, L. Zhang, and H. Wu, Wear Behavior of Corroded Al-Al2O3 Composite Coatings Prepared by Cold Spray, Surf. Coat. Technol., 2017, 326, p 247-254

    CAS  Google Scholar 

  32. K. Spencer, D. Fabijanica, and M. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204, p 336-344

    CAS  Google Scholar 

  33. Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, and T. Li, Effect of α-Al2O3 on The Properties of Cold Sprayed Al/α-Al2O3 Composite Coatings on AZ91D Magnesium Alloy, Appl. Surf. Sci., 2009, 256, p 261-266

    CAS  Google Scholar 

  34. Y.-S. Tao, T.-Y. Xiong, C. Sun, L.-Y. Kong, X.-Y. Cui, T.-F. Li, and G.-L. Song, Microstructure and Corrosion Performance of a Cold Sprayed Aluminium Coating On AZ91D Magnesium Alloy, Corros. Sci., 2010, 52, p 3191-3197

    CAS  Google Scholar 

  35. M. Shahidi, H. Tajabadipour, H.G. Hakemi, and M.R. Gholamhosseinzadeh, Comparison of Electrochemical Noise Method with the Conventional Electrochemical Techniques for Investigation of the Pitting Corrosion on Al Alloys AA6061 and AA5052 Int, J. Electrochem. Sci., 2013, 8, p 11734-11751

    CAS  Google Scholar 

  36. I.B. Singh, M. Singh, and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys, 2015, 3, p 142–148

    CAS  Google Scholar 

  37. S. Zhang, Q. Lia, X. Yangb, X. Zhonga, Y. Daia, and F. Luo, Corrosion Resistance of AZ91D Magnesium Alloy with Electroless Plating Pretreatment and Ni-TiO2 Composite Coating, Mater. Charact., 2010, 61, p 269-276

    CAS  Google Scholar 

  38. C.P.C. Morquecho, C.L. Meléndez, M.I.F. Zamora, R.G.B. Margulis, H.E.E. Ponce, F.A. Calderón, C.G. Tiburcio, and A.M. Villafañe, Electrochemical Impedance Spectroscopy Behavior of Nanometric Al-Cr and Cr-Al Coatings by Magnetron Sputtering, Int. J. Electrochem. Sci., 2012, 7, p 1125-1133

    Google Scholar 

  39. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and Chloride Concentration on Pitting Corrosion of AA6061 Aluminum Alloy, Corros. Sci., 2008, 50, p 1841-1847

    CAS  Google Scholar 

  40. E. Ghali and R.W. Revie, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, Wiley, New York, 2010

    Google Scholar 

  41. M. Oteyaka, E. Ghali, and R. Tremblay, Corrosion Behaviour of AZ and ZA Magnesium Alloys in Alkaline Chloride Media, Int. J. Corros., 2012, 2012, p 10

    Google Scholar 

  42. S.B. Pitchuka, B. Boesl, C. Zhang, D. Lahiri, A. Nieto, G. Sundararajan, and A. Agarwal, Dry Sliding Wear Behavior of Cold Sprayed Aluminum Amorphous/Nanocrystalline Alloy Coatings, Surf. Coat. Technol., 2014, 238, p 118-125

    CAS  Google Scholar 

  43. A.M. Al-Qutub, A. Khalil, N. Saheb, and A.S. Hakeem, Wear and Friction Behavior of Al6061 Alloy Reinforced with Carbon Nanotubes, Wear, 2013, 297, p 752-761

    CAS  Google Scholar 

  44. Y.-F. Liu, Z.-Y. Xia, J.-M. Han, G.-L. Zhang, and S.-Z. Yang, Microstructure and Wear Behavior of (Cr, Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-Surfacing Process, Surf. Coat. Technol., 2006, 201, p 863-867

    CAS  Google Scholar 

  45. P.J. Blau and M. Walukas, Sliding Friction and Wear of Magnesium Alloy AZ91D Produced by Two Different Methods. Matthew Walukas, Tribol. Int., 2000, 33, p 573-579

    CAS  Google Scholar 

  46. N.N. Aung, W. Zhou, and L.E.N. Lim, Wear Behaviour of AZ91D Alloy at Low Sliding Speeds, Wear, 2008, 265, p 780-786

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Pakistan Science Foundation (PSF/NSFC-II/ENG/C-IST (10)). We are thankful to the thermal spraying laboratory of Xian Jiaotong University for their technical support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, S., Li, CX., Bernussi, A.A. et al. Enhanced Electrochemical and Tribological Properties of AZ91D Magnesium Alloy via Cold Spraying of Aluminum Alloy. J Therm Spray Tech 28, 1739–1748 (2019). https://doi.org/10.1007/s11666-019-00915-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00915-8

Keywords

Navigation