Skip to main content
Log in

Acoustic Emission and Associated Damage Mechanism Analysis in 8YSZ Thermal Barrier Coatings Under Instrumented Indentation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Acoustic emission (AE) monitoring was used during indentation tests on the cross section of plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) thermal barrier coatings to investigate the relationship between AE signals and the associated deformation or single cracking events. The damage evolution in 8YSZ was studied by examining signal characteristics with the aid of AE parameter analysis and wavelet packet decomposition. The results show that the coatings were firstly elasto-plastically deformed, and microcracks gradually developed around the indentation. Then, delamination occurred and the fracture was made up of some longer cracks and dozens of microcracks. AE signals originating from coating deformation, formation of microcracks and longer cracks show different amplitudes and frequencies. The results indicate that the features of AE parameters differ depending on the mechanical failure mechanism, and AE responses are closely related to the fracture behavior and are dependent on splat microstructure of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  CAS  Google Scholar 

  2. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804-809

    Article  CAS  Google Scholar 

  3. R. Darolia, Thermal Barrier Coatings Technology: critical review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58, p 315-348

    Article  CAS  Google Scholar 

  4. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  5. C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. Dimichiel, P. Xiao, and R. Cernik, Understanding the Residual Stress Distribution Through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by High Energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12

    Article  Google Scholar 

  6. X.F. Bi, H.B. Xu, and S.K. Gong, Investigation of the Failure Mechanism of Thermal Barrier Coatings Prepared by Electron Beam Physical Vapor Deposition, Surf. Coat. Technol., 2000, 130(1), p 122-127

    Article  CAS  Google Scholar 

  7. X. Wang, G. Lee, and A. Atkinson, Investigation of TBCs on Turbine Blades by Photoluminescence Piezo-spectroscopy, Acta Mater., 2009, 57(1), p 182-195

    Article  CAS  Google Scholar 

  8. B.W. Veal, A.P. Paulikas, and P.Y. Hou, Tensile Stress and Creep in Thermally Grown Oxide, Nat. Mater., 2006, 5, p 349-351

    Article  CAS  Google Scholar 

  9. M. Tanaka, M. Hasegawa, A.F. Dericioglu, and Y. Kagawa, Measurement of Residual Stress in Air Plasma-Sprayed Y2O3-ZrO2 Thermal Barrier Coating System Using Micro-Raman Spectroscopy, Mater. Sci. Eng., A, 2006, 419, p 262-268

    Article  Google Scholar 

  10. B. Jayaraj, S. Vishweswaraiah, V.H. Desai, and Y.H. Sohn, Electrochemical Impedance Spectroscopy of Thermal Barrier Coatings as a Function of Isothermal and Cyclic Thermal Exposure, Surf. Coat. Technol., 2004, 177–178, p 140-151

    Article  Google Scholar 

  11. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223

    Article  CAS  Google Scholar 

  12. L. Yang, Y.C. Zhou, W.G. Mao, and C. Lu, Real-Time Acoustic Emission Testing Based on Wavelet Transform for the Failure Process of Thermal Barrier Coatings, Appl. Phys. Lett., 2008, 93, p 299-302

    Google Scholar 

  13. N.H. Faisal, R. Ahmed, and R.L. Reuben, Indentation Testing and Its Acoustic Emission Response: applications and Emerging Trends, Int. Mater. Rev., 2011, 56(2), p 98-142

    Article  CAS  Google Scholar 

  14. L. Yang, Y.C. Zhou, and C. Lu, Damage Evolution and Rupture Time Prediction in Thermal Barrier Coatings Subjected to Cyclic Heating and Cooling: an Acoustic Emission Method, Acta Mater., 2011, 59, p 6519-6529

    Article  CAS  Google Scholar 

  15. L. Wang, J.X. Ni, F. Shao, J.S. Yang, X.H. Zhong, H.Y. Zhao, C.G. Liu, S.Y. Tao, Y. Wang, and D.Y. Li, Failure Behavior of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings Under Three-Point Bending Test via Acoustic Emission Technique, J. Therm. Spray Tech., 2017, 26, p 116-131

    Article  CAS  Google Scholar 

  16. L. Yang, H.S. Kang, Y.C. Zhou, W. Zhu, C.Y. Cai, and C. Lu, Frequency As a Key Parameter in Discriminating the Failure Types of Thermal Barrier Coatings: Cluster Analysis of Acoustic Emission Signals, Surf. Coat. Technol., 2015, 264, p 97-104

    Article  CAS  Google Scholar 

  17. L. Wang, C.G. Liu, X.H. Zhong, Y.X. Zhao, H.Y. Zhao, J.S. Yang, S.Y. Tao, and Y. Wang, Investigation of Crack Propagation Behavior of Atmospheric Plasma-Sprayed Thermal Barrier Coatings Under Uniaxial Tension Using the Acoustic Emission Technique, J. Therm. Spray. Tech., 2015, 24(3), p 296-308

    Article  CAS  Google Scholar 

  18. C.C. Li, T. Wang, X.J. Liu, Z.H. Zheng, and Q. Li, Evolution of Mechanical Properties of Thermal Barrier Coatings Subjected to Thermal Exposure by Instrumented Indentation Testing, Ceram. Int., 2016, 42, p 10242-10250

    Article  CAS  Google Scholar 

  19. L. Charleux, V. Keryvin, M. Nivard, J.P. Guin, J.C. Sanglebuf, and Y. Yokoyama, A Method for Measuring the Contact Area in Instrumented Indentation Testing by Tip Scanning Probe Microscopy Imaging, Acta Mater., 2014, 70, p 249-258

    Article  CAS  Google Scholar 

  20. N.H. Faisal, R.L. Reuben, and R. Ahmed, An Improved Measurement of Vickers Indentation Behaviour through Enhanced Instrumentation, Meas. Sci. Technol., 2011, 22, p 207-209

    Google Scholar 

  21. W.X. Weng, Y.M. Wang, Y.M. Liao, C.C. Li, and Q. Li, Comparison of Microstructural Evolution and Oxidation Behaviour of NiCoCrAlY and CoNiCrAlY as Bond Coats Used for Thermal Barrier Coatings, Surf. Coat. Technol., 2018, 352, p 285-294

    Article  CAS  Google Scholar 

  22. X. Qiao, W.X. Weng, and Q. Li, Acoustic Emission Monitoring and Failure Behavior Discrimination of 8YSZ Thermal Barrier Coatings under Vickers Indentation Testing, Surf. Coat. Technol., 2019, 358, p 913-922

    Article  CAS  Google Scholar 

  23. E.F. Rejda, D.F. Socie, and T. Itoh, Deformation Behavior of Plasma-Sprayed Thick Thermal Barrier Coatings, Surf. Coat. Technol., 1999, 113, p 218-226

    Article  CAS  Google Scholar 

  24. R.W. Trice, D.W. Prine, and K.T. Faber, Deformation Mechanisms in Compression-Loaded, Stand-Alone Plasma-Sprayed Alumina Coatings, J. Am. Ceram. Soc., 2000, 83(12), p 3057-3064

    Article  CAS  Google Scholar 

  25. S.L. Ajit Prasad, M.M. Mayuram, and R. Krishnamurthy, Response of Plasma-Sprayed Alumina-Titania Composites to Static Indentation Process, Mater. Lett., 1999, 41(5), p 234-240

    Article  CAS  Google Scholar 

  26. R. Khamedi, A. Fallahi, and A.R. Oskouei, Effect of Martensite Phase Volume Fraction on Acoustic Emission Signals Using Wavelet Packet Analysis During Tensile Loading of Dual Phase Steels, Mater. Des., 2010, 31(6), p 2752-2759

    Article  CAS  Google Scholar 

  27. A. Marec, J.H. Thomas, and R.E.I. Guerjouma, Damage Characterization of Polymer-Based Composite Materials: Multivariable Analysis and Wavelet Transform for Clustering Acoustic Emission Data, Mech. Syst. Signal Pr., 2008, 22(6), p 1441-1464

    Article  Google Scholar 

  28. E.Y. Kim, Y.J. Lee, and S.K. Lee, Heath Monitoring of a Glass Transfer Robot in the Mass Production Line of Liquid Crystal Display Using Abnormal Operating Sounds Based on Wavelet Packet Transform and Artificial Neural Network, J. Sound Vib., 2012, 331, p 3412-3427

    Article  Google Scholar 

  29. J.J. Kang, B.S. Xu, H.D. Wang, C.B. Wang, and L.N. Zhu, Delamination Failure Monitoring of Plasma Sprayed Composite Ceramic Coatings in Rolling Contact by Acoustic Emission, Eng. Fail. Anal., 2018, 86, p 131-141

    Article  CAS  Google Scholar 

  30. A. Hase, H. Mishina, and M. Wada, Correlation Between Features of Acoustic Emission Signals and Mechanical Wear Mechanisms, Wear, 2012, 292-293, p 144-150

    Article  CAS  Google Scholar 

  31. A.G. Evans, D.R. Clarke, and C.G. Levi, The Influence of Oxides on the Performance of Advanced Gas Turbines, J. Eur. Ceram. Soc., 2008, 28, p 1405-1419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province of China (NO. 2016J05003), and Reform and Construction Project of First-Class Undergraduate Teaching in Fuzhou University (NO. 0360-00369825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xiang Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, WX., Cao, Jl., Lin, Hl. et al. Acoustic Emission and Associated Damage Mechanism Analysis in 8YSZ Thermal Barrier Coatings Under Instrumented Indentation. J Therm Spray Tech 28, 1651–1663 (2019). https://doi.org/10.1007/s11666-019-00906-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00906-9

Keywords

Navigation