Skip to main content
Log in

Application of Acoustic Emission Technology for Quantitative Characterization of Plasma-Sprayed Coatings Subjected to Bending Fatigue Tests

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma-sprayed coatings are widely used in industry, e.g., in applications subject to high wear and corrosion damage, or requiring thermal insulation. However, the failure behavior of such coatings has a great influence on the service safety of mechanical parts. Acoustic emission (AE) has attracted much attention due to its proven usefulness for real-time monitoring of damage evolution and high sensitivity to fracture sources. In this study, the damage evolution behavior of a plasma-sprayed coating subjected to three-point bending fatigue tests was monitored using the AE method. A method combining parameterized, Fourier, and wavelet analysis was used to distinguish the damage modes in the coating. The analysis results revealed two crack modes (surface vertical crack and interface crack) with two different peak frequencies. A finite element method was used to quantify the fracture stress and propagation behavior of cracks, revealing that the thickness of the coating had a strong influence on its spalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950-955

    Article  Google Scholar 

  2. L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, and A. Weisheit, Laser Cladding of Turbine Blades, Surf. Coat. Technol., 2000, 125, p 45-48

    Article  CAS  Google Scholar 

  3. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meierc, and F.S. Pettitc, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  4. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5, p 401

    Article  CAS  Google Scholar 

  5. J.J. Kang, B.S. Xu, H.D. Wang, and C.B. Wang, Competing Failure Mechanism and Life Prediction of Plasma Sprayed Composite Ceramic Coating in Rolling–Sliding Contact Condition, Tribol. Int., 2014, 73, p 128-137

    Article  CAS  Google Scholar 

  6. I. Hofinger, J. Möller, M. Bobeth, and K. Raab, Effect of Substrate Surface Roughness on the Adherence of NiCrAlY Thermal Spray Coatings, J. Therm. Spray Technol., 2002, 11, p 387

    Article  CAS  Google Scholar 

  7. X.C. Zhang, B.S. Xu, F.Z. Xuan, S.D. Tu, H.D. Wang, and Y.X. Wu, Fatigue Resistance of Plasma-Sprayed CrC–NiCr Cermet Coatings in Rolling Contact, Appl. Surf. Sci., 2008, 254, p 3734-3744

    Article  CAS  Google Scholar 

  8. L. Yang, Z.C. Zhong, J. You, Q.M. Zhang, Y.C. Zhou, and W.Z. Tang, Acoustic Emission Evaluation of Fracture Characteristics in Thermal Barrier Coatings under Bending, Surf. Coat. Technol., 2013, 232, p 710-718

    Article  CAS  Google Scholar 

  9. M.R. Begley, D.R. Mumm, A.G. Evans, and J.W. Hutchinson, Analysis of a Wedge Impression Test for Measuring the Interface Toughness between Films/Coatings and Ductile Substrates, Acta Mater., 2000, 48, p 3211-3220

    Article  CAS  Google Scholar 

  10. M.P.D. Boer and W.W. Gerberich, Microwedge Indentation of the Thin Film Fine Line—I. Mechanics, Acta Mater., 1996, 44, p 3169-3175

    Article  Google Scholar 

  11. Y. Yamazaki, A. Schmidt, and A. Scholz, The Determination of the Delamination Resistance in Thermal Barrier Coating System by Four-Point Bending Tests, Surf. Coat. Technol., 2006, 201, p 744-754

    Article  CAS  Google Scholar 

  12. Y.C. Zhou, T. Hashida, and C.Y. Jian, Determination of Interface Fracture Toughness in Thermal Barrier Coating System by Blister Tests, J. Eng. Mater. Trans. ASME, 2003, 125, p 176-182

    Article  CAS  Google Scholar 

  13. B.W. Veal, A.P. Paulikas, and P.Y. Hou, Tensile Stress and Creep in Thermally Grown Oxide, Nat. Mater., 2006, 5, p 349

    Article  CAS  Google Scholar 

  14. F. Yu and T.D. Bennett, Phase of Thermal Emission Spectroscopy for Properties Measurements of Delaminating Thermal Barrier Coatings, J. Appl. Phys., 2005, 98, p 103501

    Article  Google Scholar 

  15. C. Zhang, C. Zhou, H. Peng, S. Gong, and H. Xu, Influence of Thermal Shock on Insulation Effect of Nano-multilayer Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 201, p 6340-6344

    Article  CAS  Google Scholar 

  16. D. Renusch and M. Schütze, Measuring and Modeling the TBC Damage Kinetics by Using Acoustic Emission Analysis, Surf. Coat. Technol., 2007, 202, p 740-744

    Article  CAS  Google Scholar 

  17. X.Q. Ma and M. Takemoto, Quantitative Acoustic Emission Analysis of Plasma Sprayed Thermal Barrier Coatings Subjected to Thermal Shock Tests, Mater. Sci. Eng. A Struct., 2001, 308, p 101-110

    Article  Google Scholar 

  18. T.M. Roberts and M. Talebzadeh, Acoustic Emission Monitoring of Fatigue Crack Propagation, J. Constr. Steel Res., 2003, 59, p 695-712

    Article  Google Scholar 

  19. X.Q. Ma, S. Cho, and M. Takemoto, Acoustic Emission Source Analysis of Plasma Sprayed Thermal Barrier Coatings during Four-Point Bend Tests, Surf. Coat. Technol., 2001, 139, p 55-62

    Article  CAS  Google Scholar 

  20. R.V. Sagar, B.K.R. Prasad, and S.S. Kumar, An Experimental Study on Cracking Evolution in Concrete and Cement Mortar by the b-Value Analysis of Acoustic Emission Technique, Cem. Concr. Res., 2012, 42, p 1094-1104

    Article  CAS  Google Scholar 

  21. D. Drozdenko, J. Bohlen, S. Yi, M. Peter, C. František, and D. Patrik, Investigating a Twinning–Detwinning Process in Wrought Mg Alloys by the Acoustic Emission Technique, Acta Mater., 2016, 110, p 103-113

    Article  CAS  Google Scholar 

  22. A. Kucuk, C.C. Berndt, U. Senturk, and R.S. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings, II: Acoustic Emission, Mater. Sci. Eng. A Struct., 2000, 284, p 41-50

    Article  Google Scholar 

  23. I.M.D. Rosa, C. Santulli, and F. Sarasini, Acoustic Emission for Monitoring the Mechanical Behaviour of Natural Fibre Composites: A Literature Review, Compos. Part A Appl. Sci. Manuf., 2009, 40, p 1456-1469

    Article  Google Scholar 

  24. L. Yang, Y.C. Zhou, W.G. Mao, and Q.X. Liu, Acoustic Emission Evaluation of the Fracture Behavior of APS-TBCs Subjecting to Bondcoating Oxidation, Surf. Interface Anal., 2007, 39, p 761-769

    Article  CAS  Google Scholar 

  25. L. Yang, Y.C. Zhou, W.G. Mao, and C. Lu, Real-Time Acoustic Emission Testing Based on Wavelet Transform for the Failure Process of Thermal Barrier Coatings, Appl. Phys. Lett., 2008, 93, p 231906

    Article  Google Scholar 

  26. L. Yang, Y.C. Zhou, and C. Lu, Damage Evolution and Rupture Time Prediction in Thermal Barrier Coatings Subjected to Cyclic Heating and Cooling: An Acoustic Emission Method, Acta Mater., 2011, 59, p 6519-6529

    Article  CAS  Google Scholar 

  27. P. Seiler, M. Bäker, and J. Rösler, Multi-scale Failure Mechanisms of Thermal Barrier Coating Systems, Comput. Mater. Sci., 2013, 80, p 27-34

    Article  CAS  Google Scholar 

  28. X. Li and L. Dong, An Efficient Closed-Form Solution for Acoustic Emission Source Location in Three-Dimensional Structures, AIP Adv., 2014, 4, p 152-160

    CAS  Google Scholar 

  29. J.G. Ning, L. Chu, and H.L. Ren, A Quantitative Acoustic Emission Study on Fracture Processes in Ceramics Based on Wavelet Packet Decomposition, J. Appl. Phys., 2014, 116, p 3773

    Google Scholar 

  30. Y. Sun, J. Li, W. Zhang, and T.J. Wang, Local Stress Evolution in Thermal Barrier Coating System during Isothermal Growth of Irregular Oxide Layer, Surf. Coat. Technol., 2013, 216, p 237-250

    Article  CAS  Google Scholar 

  31. Y. Xu and B.G. Mellor, Application of Acoustic Emission to Detect Damage Mechanisms of Particulate Filled Thermoset Polymeric Coatings in Four Point Bend Tests, Surf. Coat. Technol., 2011, 205, p 5478-5482

    Article  CAS  Google Scholar 

  32. D.G. Aggelis, D.V. Soulioti, N.M. Barkoula, A.S. Paipetis, and T.E. Matikas, Influence of Fiber Chemical Coating on the Acoustic Emission Behavior of Steel Fiber Reinforced Concrete, Cemt. Concr. Compos., 2012, 34, p 62-67

    Article  CAS  Google Scholar 

  33. C.K. Chui and C. Heil, An Introduction to Wavelets, 1st ed., Academic, New York, 1992

    Google Scholar 

  34. Z. Suo and J.W. Hutchinson, Interface Crack between Two Elastic Layers, Int. J. Fract., 1990, 43, p 1-18

    Article  Google Scholar 

  35. S.R. Choi, D. Zhu, and R.A. Miller, Fracture Behavior under Mixed-Mode Loading of Ceramic Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures, Eng. Fract. Mech., 2005, 72, p 2144-2158

    Article  Google Scholar 

  36. J. Chen and S.J. Bull, Approaches to Investigate Delamination and Interfacial Toughness in Coated Systems: An Overview, J. Phys. D Appl. Phys., 2011, 44, p 034001

    Article  Google Scholar 

  37. M.G.R. Sause, F. Haider, and S. Horn, Quantification of Metallic Coating Failure on Carbon Fiber Reinforced Plastics Using Acoustic Emission, Surf. Coat. Technol., 2009, 204, p 300-308

    Article  CAS  Google Scholar 

  38. H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155, p 21-32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 51535011 and 51675532) and the Fundamental Research Funds for the Central Universities (No. HEUCF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-hong Dong or Hai-dou Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Jn., Dong, Lh., Wang, Hd. et al. Application of Acoustic Emission Technology for Quantitative Characterization of Plasma-Sprayed Coatings Subjected to Bending Fatigue Tests. J Therm Spray Tech 27, 1090–1102 (2018). https://doi.org/10.1007/s11666-018-0750-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0750-y

Keywords

Navigation