Skip to main content
Log in

Numerical Study on Particle–Gas Interaction Close to the Substrates in Thermal Spray Processes with High-Kinetic and Low-Pressure Conditions

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In thermal spray processes, the interaction between the gas jet and the particulate feedstock can affect the coating build-up mechanisms considerably. In particular under high-kinetic and low-pressure conditions, small particles are subjected to rapid deflection and velocity changes close to the substrate. In this work, numerical studies were carried out to investigate the interaction between gas and particles in the substrate boundary layers (BL). Typical conditions for suspension plasma spraying (SPS), plasma spray-physical vapor deposition (PS-PVD), and aerosol deposition (AD) were taken as a basis. Particular importance was attached to the consideration of rarefaction and compressibility effects on the drag force. Typical Stokes numbers for the different thermal spray processes were calculated and compared. Possible effects on the resulting coating build-up mechanisms and microstructure formation are discussed. The results show that just for larger particles in the SPS process the laminar flow attached to the particles begins to separate so that the drag coefficients have to be corrected. Furthermore, slip effects occur in all the investigated processes and must be considered. The comparison of calculated Stokes numbers with critical values shows that there is a disposition to form columnar microstructures or stacking effects depending on the particle size for PS-PVD and SPS, but not for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c :

Sonic speed (m s−1)

C :

Coefficient (–)

d :

Diameter (m)

f :

Correction factor (–)

F :

Force (N)

k B :

Boltzmann constant (1.381 × 10−23 J K−1)

Kn :

Knudsen number (–)

m :

Mass (kg)

Ma :

Mach number (–)

p :

Pressure (Pa)

Pr :

Prandtl number (–)

r :

Radial coordinate (m)

R :

Specific gas constant (J kg−1 K−1)

Re :

Reynolds number (–)

St :

Stokes number (–)

t :

Time (s)

T :

Temperature (K)

v :

Velocity (m s−1)

z :

Axial coordinate (m)

α :

Fitting parameter (–)

β :

Fitting parameter (–)

γ :

Specific heat capacity ratio (–)

δ :

Fitting parameter (–)

κ :

Curvature (m−1)

λ :

Mean free path length (m)

µ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

τ :

Characteristic time (s)

Crit:

Critical

D:

Drag

E:

External

g:

Gas

jet:

Jet

Kn :

Related to Knudsen number

M :

Molecular

p :

Particle

PG:

Pressure gradient

Re :

Related to Reynolds number

rel:

Relative

sub:

Substrate

:

Ambient, not influenced by the substrate

\(\dot{}\) :

First derivation with respect to time

\(\ddot{}\) :

Second derivation with respect to time

‘:

Corrected

References

  1. H. Kaßner, R. Siegert, D. Hathiramani, R. Vaßen, and D. Stöver, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  CAS  Google Scholar 

  2. R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1–2), p 219-225

    Article  CAS  Google Scholar 

  3. S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23(1–2), p 182-189

    Article  CAS  Google Scholar 

  4. N. Curry, K. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5(3), p 338-356 ((in English))

    Article  CAS  Google Scholar 

  5. N. Curry, K. VanEvery, T. Snyder, and N. Markocsan, Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings, Coatings, 2014, 4(3), p 630-650

    Article  CAS  Google Scholar 

  6. B. Bernard, L. Bianchi, A. Malié, A. Joulia, and B. Rémy, Columnar Suspension Plasma Sprayed Coating Microstructural Control for Thermal Barrier Coating Application, J. Eur. Ceram. Soc., 2016, 36(4), p 1081-1089

    Article  CAS  Google Scholar 

  7. W. Fan, Y. Bai, J.R. Li, Y. Gao, H.Y. Chen, Y.X. Kang, W.J. Shi, and B.Q. Li, Microstructural Design and Properties of Supersonic Suspension Plasma Sprayed Thermal Barrier Coatings, J. Alloys Compd., 2017, 699, p 763-774

    Article  CAS  Google Scholar 

  8. B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malié, V. Schick, and B. Rémy, Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2017, 318, p 122-128

    Article  CAS  Google Scholar 

  9. D. Zhou, O. Guillon, and R. Vaßen, Development of YSZ Thermal Barrier Coatings Using Axial Suspension Plasma Spraying, Coatings, 2017, 7(8), p 120

    Article  CAS  Google Scholar 

  10. A. Ganvir, S. Joshi, N. Markocsan, and R. Vassen, Tailoring Columnar Microstructure Of Axial Suspension Plasma Sprayed TBCs for Superior Thermal Shock Performance, Mater. Des., 2018, 144, p 192-208

    Article  CAS  Google Scholar 

  11. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182

    Google Scholar 

  12. B. Selvan, K. Ramachandran, B.C. Pillai, and D. Subhakar, Numerical Modelling of Ar-N2 Plasma Jet Impinging on a Flat Substrate, J. Therm. Spray Technol., 2011, 20(3), p 534-548

    Article  CAS  Google Scholar 

  13. K. Pourang, C. Moreau, and A. Dolatabadi, Effect of Substrate and Its Shape on in-Flight Particle Characteristics in Suspension Plasma Spraying, J. Therm. Spray Technol., 2016, 25(1–2), p 44-54

    Article  CAS  Google Scholar 

  14. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  CAS  Google Scholar 

  15. P. Sokołowski, S. Kozerski, L. Pawłowski, and A. Ambroziak, The key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106

    Article  CAS  Google Scholar 

  16. P. Sokołowski, L. Pawłowski, D. Dietrich, T. Lampke, and D. Jech, Advanced Microscopic Study of Suspension Plasma-Sprayed Zirconia Coatings with Different Microstructures, J. Therm. Spray Technol., 2016, 25(1–2), p 94-104

    Article  CAS  Google Scholar 

  17. O. Racek, The Effect of HVOF Particle-Substrate Interactions on Local Variations in the Coating Microstructure and the Corrosion Resistance, J. Therm. Spray Technol., 2010, 19(5), p 841-851

    Article  CAS  Google Scholar 

  18. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, Berlin, 2014

    Book  Google Scholar 

  19. F. Bahbou, P. Nylén, Relationship between surface topography parameters and adhesion strength for plasma spraying, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential!, ed. by E. Lugscheider, May 2–4, 2005 (Basel, Switzerland), DVS-German Welding Society, pp. 1027–1031

  20. P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129

    Article  Google Scholar 

  21. R.C. Seshadri, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics Through Curvature Measurements, J. Therm. Spray Technol., 2016, 25(8), p 1666-1683

    Article  CAS  Google Scholar 

  22. Y. Zhao, Z. Yu, M.-P. Planche, A. Lasalle, A. Allimant, G. Montavon, and H. Liao, Influence of Substrate Properties on the Formation of Suspension Plasma Sprayed Coatings, J. Therm. Spray Technol., 2018, 27(1–2), p 73-83

    Article  CAS  Google Scholar 

  23. M. Gupta, N. Markocsan, X.-H. Li, and L. Östergren, Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2018, 27(1–2), p 84-97

    Article  CAS  Google Scholar 

  24. B. Bernard, A. Quet, L. Bianchi, V. Schick, A. Joulia, A. Malié, and B. Rémy, Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties, J. Therm. Spray Technol., 2017, 26(2–3), p 1025-1037

    Article  CAS  Google Scholar 

  25. A. Farrokhpanah, T.W. Coyle, and J. Mostaghimi, Numerical Study of Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26(1–2), p 12-36

    Article  Google Scholar 

  26. J. Oberste-Berghaus, S. Bouaricha, J.-G. Legoux, C. Moreau, Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential!, ed. by E. Lugscheider, May 2–4, 2005 (Basel, Switzerland), DVS-German Welding Society, pp. 512–518

  27. P. Wang, W. He, G. Mauer, R. Mücke, and R. Vaßen, Monte Carlo Simulation of Column Growth in Plasma Spray Physical Vapor Deposition Process, Surf. Coat. Technol., 2018, 335, p 188-197

    Article  CAS  Google Scholar 

  28. M. Parmar, A. Haselbacher, and S. Balachandar, Generalized Basset–Boussinesq–Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow, Phys. Rev. Lett., 2011, 106(8), p 084501

    Article  CAS  Google Scholar 

  29. L. von Schiller, N. Naumann, Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, VDI Zeitschrift (1857–1968), 77(12), 318–320 (1933)

  30. E. Loth, Compressibility and Rarefaction Effects on Drag of a Spherical Particle, AIAA J., 2008, 46(9), p 2219-2228

    Article  Google Scholar 

  31. G.A. Bird, Definition of Mean Free Path for Real Gases, Phys. Fluids, 1983, 26(11), p 3222-3223

    Article  Google Scholar 

  32. X. Chen and E. Pfender, Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97-113

    Article  CAS  Google Scholar 

  33. X. Chen and X. Chen, Drag on a Metallic or Nonmetallic Particle Exposed to a Rarefied Plasma Flow, Plasma Chem. Plasma Process., 1989, 9(3), p 387-408

    Article  CAS  Google Scholar 

  34. X. Chen and P. He, Heat Transfer from a Rarefied Plasma Flow to a Metallic or Nonmetallic Particle, Plasma Chem. Plasma Process., 1986, 6(4), p 313-333

    Article  CAS  Google Scholar 

  35. Y.P. Chyou and E. Pfender, Behavior of Particulates in Thermal Plasma Flows, Plasma Chem. Plasma Process., 1989, 9(1), p 45-71

    Article  Google Scholar 

  36. D.J. Rader, Momentum Slip Correction Factor for Small Particles in Nine Common Gases, J. Aerosol Sci., 1990, 21(2), p 161-168

    Article  CAS  Google Scholar 

  37. J.H. Kim, G.W. Mulholland, S.R. Kukuck, and D.Y.H. Pui, Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83, J. Res. Natl. Inst. Stand. Technol., 2005, 110(1), p 31-54

    Article  CAS  Google Scholar 

  38. E. Cunningham, On the Velocity of Steady Fall of Spherical Particles through Fluid Medium, Proc. R. Soc. Lond. Ser. A, 1910, 83, p 357-365

    Article  Google Scholar 

  39. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26(4), p 393-414

    Article  CAS  Google Scholar 

  40. C.G. Phillips and S.R. Kaye, The Influence of the Viscous Boundary Layer on the Critical Stokes Number for Particle Impaction Near a Stagnation Point, J. Aerosol Sci., 1999, 30(9), p 709-718

    Article  CAS  Google Scholar 

  41. E. Pohlhausen, Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner reibung und kleiner Wärmeleitung, ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 1(2), 115–121 (1921) (in German)

  42. H. Schlichting and K. Gersten, Grenzschichttheorie, Springer, Berlin, 2006

    Google Scholar 

  43. G. Mauer and R. Vaßen, Conditions for Nucleation and Growth in the Substrate Boundary Layer at Plasma Spray-Physical Vapor Deposition (PS-PVD), Surf. Coat. Technol., 2018, https://doi.org/10.1016/j.surfcoat.2018.06.086

    Article  Google Scholar 

  44. C.D. Donaldson and R.S. Snedeker, A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets, J. Fluid Mech., 2006, 45(2), p 281-319

    Article  Google Scholar 

  45. A. Mahdavi and A. McDonald, Analytical Study of The Heat Transfer Coefficient of the Impinging Air Jet During Cold Spraying, Int. J. Therm. Sci., 2018, 130, p 289-297

    Article  Google Scholar 

  46. W. He, G. Mauer, M. Gindrat, R. Wäger, and R. Vaßen, Investigations on the Nature of Ceramic Deposits in Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2017, 26(1), p 83-92

    Article  Google Scholar 

  47. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications—Analysis. NASA-Reference Publication, 1311 part 1, NASA Lewis Research Center, 1994

  48. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications—User’s Manual and Program Description. NASA-Reference Publication 1311, part 2, NASA Lewis Research Center, 1996

  49. M. Vardelle, A. Vardelle, P. Fauchais, and M.I. Boulos, Plasma-Particle Momentum and Heat Transfer: Modelling and Measurements, AIChE J., 1983, 29(2), p 238-243

    Article  Google Scholar 

  50. G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2–3), p 83-89

    Article  CAS  Google Scholar 

  51. G. Mauer, Plasma Characteristics and Plasma-Feedstock Interaction Under PS-PVD Process Conditions, Plasma Chem. Plasma Process., 2014, 34(5), p 1171-1186

    Article  CAS  Google Scholar 

  52. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1–2), p 11-23

    CAS  Google Scholar 

  53. M. Jadidi, A.Z. Yeganeh, and A. Dolatabadi, Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates, J. Therm. Spray Technol., 2018, 27(1–2), p 59-72

    Article  CAS  Google Scholar 

  54. W. He, G. Mauer, M. Gindrat, R. Wäger, and R. Vaßen, Investigations on the Nature of Ceramic Deposits in Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2016, 26(1–2), p 83-92

    Google Scholar 

  55. G. Mauer and R. Vaßen, Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties, J. Phys. Conf. Ser., 2012, 406, p 012005

    Article  CAS  Google Scholar 

  56. F.M. White, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauer, G. Numerical Study on Particle–Gas Interaction Close to the Substrates in Thermal Spray Processes with High-Kinetic and Low-Pressure Conditions. J Therm Spray Tech 28, 27–39 (2019). https://doi.org/10.1007/s11666-018-0810-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0810-3

Keywords

Navigation