Skip to main content
Log in

Pin Fin Array Heat Sinks by Cold Spray Additive Manufacturing: Economics of Powder Recycling

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

As a result of the rise in processing power demands of today’s personal computers, water-cooled pin fin heat sinks are increasingly being employed for the cooling of graphical processing units. Currently, these high-performance devices are manufactured through high-cost, high-waste processes. In recent years, a new solution has emerged using the cold gas dynamic spray process, in which pin fins are manufactured onto a base plate by spraying metallic powder particles through a mask allowing for a high degree of adaptability to different graphics processing unit shapes and sizes. One drawback of this process is reduced deposition efficiency, resulting in a fair portion of the feedstock powder being wasted as substrate sensitivity to heat and mechanical residual stresses requires the use of reduced spray parameters. This work aims to demonstrate the feasibility of using powder recycling to mitigate this issue and compares coatings sprayed with reclaimed powder to their counterparts sprayed with as-received powder. The work demonstrates that cold gas dynamic spray is a highly flexible and economically competitive process for the production of pin fin heat sinks when using powder recycling. The heat transfer properties of the resulting fins are briefly addressed and demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ΔT 1 :

Inlet temperature difference (°C)

ΔT 2 :

Outlet temperature difference (°C)

ΔT lm :

Log-mean temperature difference (°C)

η f :

Fin efficiency

η o :

Surface efficiency

θ :

Fin base angle (°)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg/m3)

A*:

Nozzle throat area (m2)

A fin :

Fin area (m2)

A tot :

Total heat transfer area (m2)

A un-fin :

Un-finned area (m2)

B :

Transverse fin base width (m)

B s :

Side fin base width (m)

C Cu :

Cost of copper ($/kg)

C electricity :

Cost of electricity ($/kW-h)

C labor :

Cost of labor ($/h)

C N2 :

Cost of nitrogen ($/kg)

Cp N2 :

Specific heat of nitrogen (kJ/kg K)

D :

Linear spray distance (m)

D h :

Hydraulic diameter (m)

DEmask :

Mask deposition efficiency

DEsubstrate :

Substrate deposition efficiency

EC:

Total electricity cost ($)

GC:

Total gas cost ($)

H :

Fin height (m)

h :

Convection coefficient (W/m2 K)

I 1 :

First-order modified Bessel function

I 2 :

Second-order modified Bessel function

k :

Specific heat ratio

k Cu :

Conductivity of copper (W/m K)

L :

Length of the finned area (m)

LC:

Total labor cost ($)

m :

Fin parameter (m−1)

\(\dot{m}_{{N}2}\) :

Mass flowrate of nitrogen (kg/s)

\(\dot{m}_{{\rm water}}\) :

Mass flowrate of water (kg/s)

N fins,w :

Number of fins widthwise

P*:

Pressure at the nozzle throat (Pa)

P flow :

Perimeter of the flow area (m)

P o :

Stagnation pressure (Pa)

PC:

Total powder cost ($)

PCmask :

Total powder cost lost on the mask ($)

PCsubstrate :

Total powder cost lost on the substrate ($)

PCun-deposited :

Total powder cost un-deposited ($)

PFR:

Powder feed rate (kg/s)

\(\dot{Q}_{\text{Cu}}\) :

Heat rate through copper (W)

Q N2 :

Total heat into nitrogen (J)

\(\dot{Q}_{N2}\) :

Heat rate into nitrogen (W)

\(\dot{Q}_{\text{water}}\) :

Heat rate into water (W)

R :

Ideal gas constant (J/mol-K)

R Cu :

Resistance of copper (K/W)

R eq :

Equivalent resistance (K/W)

R fin :

Resistance of fins (K/W)

R TC :

Thermal contact resistance (K/W)

R un-fin :

Resistance of un-finned area (K/W)

Re :

Reynolds number

S :

Distance between fins (m)

t :

Time of spray (s)

T*:

Temperature at nozzle throat (°C)

T 1 :

Inlet temperature of nitrogen (°C)

T 2 :

Outlet temperature of nitrogen (°C)

T block :

Temperature of the block (°C)

T o :

Stagnation temperature (°C)

T s :

Surface temperature (°C)

T water,in :

Water inlet temperature (°C)

T water,out :

Water outlet temperature (°C)

UA:

Thermal conductance (W/K)

V max :

Maximum flow velocity (m/s)

V T :

Traverse velocity (m/s)

W :

Width of the finned area (m)

References

  1. D. Kanter, Graphics Processing Requirements for Enabling Immersive Vr, AMD Dev. Whitepaper, 2015, p 1–12. http://developer.amd.com/wordpress/media/2012/10/gr_proc_req_for_enabling_immer_VR.pdf. Accessed 1 Feb 2018

  2. W. Nakayama, Evolution of Hardware Morphology of Large-Scale Computers and the Trend of Space Allocation for Thermal Management, J. Electron. Pack., 2016, 139, p 010801–1-010801-22

    Article  Google Scholar 

  3. S.A. Jajja, W. Ali, H.M. Ali, and A.M. Ali, Water Cooled Minichannel Heat Sinks for Microprocessor Cooling: Effect of Fin Spacing, Appl. Therm. Eng., 2014, 64, p 76-82

    Article  Google Scholar 

  4. K. Azar and B. Tavassoli, Choosing and Fabricating a Heat Sink Design, Qpedia Thermal Manag. Electron. Cool. Book, 2008, 2, p 173-177

    Google Scholar 

  5. NVIDIA, NVIDIA GeForce GPU’s. https://www.geforce.com/hardware/desktop-gpus. Accessed 5 Jan 2017

  6. AMD, AMD GPU Products. https://gaming.radeon.com/en/category/products/. Accessed 5 Jan 2018

  7. M.F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier, Oxford, 2005, p 197-209

    Google Scholar 

  8. R.N. Raoelison, C. Verdy, and H. Liao, Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications, Mater. Des., 2017, 133, p 266-287

    Article  Google Scholar 

  9. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69, p 2269-2278

    Article  Google Scholar 

  10. P. Dupuis, Y. Cormier, M. Fenech, and B. Jodoin, Heat Transfer and Flow Structure Characterization for Pin Fins Produced by Cold Spray Additive Manufacturing, Int. J. Heat Mass Transf., 2016, 98, p 650-661

    Article  Google Scholar 

  11. P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Performance Evaluation of Near-Net Pyramidal Shaped Fin Arrays Manufactured by Cold Spray, Int. J. Heat Mass Transf., 2014, 69, p 34-43

    Article  Google Scholar 

  12. Y. Cormier, P. Dupuis, A. Farjam, A. Corbeil, and B. Jodoin, Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects under Forced Convection, Int. J. Heat Mass Transf., 2014, 75, p 235-244

    Article  Google Scholar 

  13. H. Mäkinen, J. Lagerbom, and P. Vuoristo, Adhesion of cold sprayed coatings : effect of powder, substrate, and heat treatment, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., Springer, Beijing, 2007, p 31-36

    Google Scholar 

  14. P. Sudharshan, D.S. Rao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2007, 16(3), p 425-434

    Article  Google Scholar 

  15. K.L. Chavez and D.W. Hess, A Novel Method of Etching Copper Oxide Using Acetic Acid, J. Electrochem. Soc., 2001, 148(11), p 640-643

    Article  Google Scholar 

  16. P.J. Pritchard and J.C. Leylegian, Introduction to Fluid Mechanics, 6th ed., Wiley, New York, 2011

    Google Scholar 

  17. C. Borgnakke and R.E. Sonntag, Fundamentals of Thermodynamics, 8th ed., Wiley, New York, 2013

    Google Scholar 

  18. F.P. Incropera, T.L. Bergman, A.S. Lavine, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, New York, 2011

    Google Scholar 

  19. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221

    Article  Google Scholar 

  20. D.D.L. Chung, Materials for Thermal Conduction, Appl. Therm. Eng., 2001, 21(16), p 1593-1605

    Article  Google Scholar 

  21. K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1–2), p 234-242

    Article  Google Scholar 

  22. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, The Rebound Phenomenon in Kinetic Spraying Deposition, Scr. Mater., 2006, 54, p 665-669

    Article  Google Scholar 

  23. M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1–2), p 89-94

    Article  Google Scholar 

  24. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coatings Technol., 2006, 201(6), p 3422-3429

    Article  Google Scholar 

  25. R. Fernandez and B. Jodoin, Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Technol., 2018, 27(4), p 603-623

    Article  Google Scholar 

  26. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265

    Article  Google Scholar 

  27. W.-Y. Li, C.-J. Li, and H. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256, p 4953-4958

    Article  Google Scholar 

  28. R. Huang, M. Sone, W. Ma, and H. Fukanuma, The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings, Surf. Coat. Technol., 2015, 261, p 278-288

    Article  Google Scholar 

  29. Z. Arabgol, M. Villa Vidaller, H. Assadi, F. Gärtner, and T. Klassen, Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits, Acta Mater., 2017, 127, p 287-301

    Article  Google Scholar 

  30. M. Meyer, S. Yin, and R. Lupoi, Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray, J. Therm. Spray Technol., 2017, 26(1–2), p 60-70

    Article  Google Scholar 

  31. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  32. P. Dupuis, Y. Cormier, M. Fenech, A. Corbeil, and B. Jodoin, Flow Structure Identification and Analysis in Fin Arrays Produced by Cold Spray Additive Manufacturing, Int. J. Heat Mass Transf., 2016, 93, p 301-313

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Perry.

Additional information

This article is an invited paper selected from presentations at the 2018 International Thermal Spray Conference, held May 7–10, 2018, in Orlando, Florida, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, J., Richer, P., Jodoin, B. et al. Pin Fin Array Heat Sinks by Cold Spray Additive Manufacturing: Economics of Powder Recycling. J Therm Spray Tech 28, 144–160 (2019). https://doi.org/10.1007/s11666-018-0758-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0758-3

Keywords

Navigation