Skip to main content
Log in

Heat transfer performance of air-cooled pin–fin heatsinks: a review

  • Review Paper
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Electronic components used in high power dissipating equipment’s requires superior thermal management and system design should be good enough to serve its promised lifetime without any performance issues/early failures. Prime task for product designers is to keep the electronic devices temperature below threshold limit by dispelling generated heat. Most common and preferred electronics thermal management technique is air-cooled heatsinks with fans because of its heat dissipation range and most reliable simple technique. This review paper specifically aims to understand the recent advancements of air-cooled pin–fin heatsinks for heat transfer applications. This article focuses on available literature only on heatsinks of pin–fin type to explore the results of different types of geometry, orientation, spacing out, perforations on heat transfer performance. In addition to above analytical, numerical, experimental results and heat transfer correlations of different studies are compared and summarized. The outcome of this review article is to provide better understanding on the cooling performance of the pin–fin type heatsink technology and its effective usage towards better thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

η :

System performance

q :

Heat flux (W m–2)

Re:

Reynolds number

ρ :

Density (kg m–3)

V :

Average velocity of air inside duct (m s–1)

D h :

Hydraulic diameter (m)

μ :

Dynamic Viscosity of fluid (kg ms–1)

ν :

Kinematic viscosity of the fluid (m2 s–1)

A d :

Cross-section area (m2)

A s :

Total surface area of solid fin array (m2)

P c :

Perimeter of cross-section (m)

Nu:

Nusselt number

h avg :

Average convective heat transfer coefficient (W m–2 °C–1)

K air :

Thermal conductivity of air (W m–1 °C–1)

K :

Thermal conductivity of heat sink (W m–1 °C–1)

ΔP :

Pressure drop (kPa)

g :

Acceleration due to gravity (m s–2)

Δh :

Differential pressure head across the test section (m)

P in :

Pressure at inlet (kPa)

P out :

Pressure at outlet (kPa)

Q ele :

Total electrical energy supplied to heater (W)

Q cond :

Heat energy dissipated from heat sink through conduction (W)

Q conv :

Heat dissipated from heat sink through convection (W)

Q rad :

Heat dissipated from heat sink through radiation (W)

Q loss :

Heat energy loss through insulation (W)

Q net :

Net heat energy supplied to heat sink (W)

m :

Mass flow rate of fluid (m s–1)

C p :

Specific heat capacity of fluid (J kg–1 °C–1)

T s :

Average base plate temperature (°C)

T bm :

Bulk mean temperature (°C)

T out :

Outlet air temperature (°C)

T in :

Inlet air temperature (°C)

R th :

Thermal resistance (°C W–1)

f :

Friction factor

ε f :

Fin effectiveness

ϵ :

Fin efficiency

Lw:

Length of wing

D :

Pin fin diameter

S :

Fin Pinch

S/D :

Pitch to pin fin diameter ratio

Lw/D :

Length of wing to pin fin diameter ratio

Η :

System performance

NACA:

National Advisory Committee for Aeronautics

GA:

Genetic algorithm

CFD:

Computational fluid dynamics

HTPF:

Hydrothermal performance factor

THP:

Thermo hydraulic performance

PEC:

Performance evaluation criteria

TPI:

Aero thermal performance index

COE:

Coefficient of enhancement

FOM:

Factor of merit

PPFHS:

Plate-pin–fin heat sink

PPFHS-P:

Plate-pin–fin heat sink with perforations

PPFHS-S:

Plate-pin–fin heat sink with splitters

PPFHS-PS:

Plate-pin–fin heat sink with perforations and splitters

SFHSs:

Strip fin heat sinks

MPF:

Micro pin fins

BCC:

Body centred cubic

PF:

Profit factor

PPFI:

Percentage of profit factor increment

C-GPFs:

Cylindrical grooved pin-fins

T-GPFs:

Triangular grooved pin-fins

HPFs:

Hexagonal pin fins

CPFs:

Cylindrical pin fins

Np:

Number of perforations

References

  1. Sadique H, Samsher QM. Heat transfer augmentation in microchannel heatsink using secondary flows: a review. Int Jurnal Heat Mass Transf. 2022;194:123063. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123063.

    Article  Google Scholar 

  2. Nafis BM, Whitt R, Iradukunda A-C, Huitink D. Additive manufacturing for enhancing thermal dissipation in heatsink implementation: a review. Heat Transf Eng. 2020. https://doi.org/10.1080/01457632.2020.1766246.

    Article  Google Scholar 

  3. Iradukunda A-C, Huitink DR, Luo F. A review of advanced thermal management solutions and the implications for integration in high-voltage packages. IEEE J Emerg Sel Top Power Electron. 2020;8(1):256–71. https://doi.org/10.1109/JESTPE.2019.2953102.

    Article  Google Scholar 

  4. Smoyer JL, Norris PM. Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transf Eng. 2018. https://doi.org/10.1080/01457632.2018.1426265.

    Article  Google Scholar 

  5. Tong XC. Thermal management fundamentals and design guides in electronic packaging. Adv Mater Thermal Manag Electron Packag Springer Ser Adv Microelectron. 2011. https://doi.org/10.1007/978-1-4419-7759-5_1.

    Article  Google Scholar 

  6. Maji A, Choubey G. Improvement of heat transfer through fins: a brief review of recent developments. Heat Transf. 2020;49(3):1658–85. https://doi.org/10.1002/htj.21684.

    Article  Google Scholar 

  7. Kumar VM, NageswaraRao B, Farooq SK. A detailed review on pin fin heatsink world academy of science engineering and technology. 2016. Int J Energy Power Eng. https://doi.org/10.5281/zenodo.1127134.

  8. Khattak Z, Ali HM. Air cooled heatsink geometries subjected to forced flow: a critical review. Int J Heat Mass Transf. 2019;130:141–61. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048.

    Article  Google Scholar 

  9. Nilpueng K, Mesgarpour M, Asirvatham LG, Dalkılıç AS, SeonAhn H, Mahian O, Wongwises S. Effect of pin fin configuration on thermal performance of plate pin fin heatsinks. Case Stud Therm Eng. 2021;27:101269. https://doi.org/10.1016/j.csite.2021.101269.

    Article  Google Scholar 

  10. Yadava S, Pandey KM. A comparative thermal analysis of pin fins for improved heat transfer in forced convection. Mater Today Proc. 2018;5:1711–7. https://doi.org/10.1016/j.matpr.2017.11.268.

    Article  Google Scholar 

  11. Xu J, Yao J, Su P, Lei J, Wu J, Gao T. Heat transfer and pressure loss characteristics of pin-fins with different shapes in a wide channel. In: Proceedings of ASME turbo expo 2017: turbomachinery technical conference and exposition GT2017. https://doi.org/10.1115/GT2017-63761

  12. Jin W, Junmei Wu, Jia N, Lei J, Ji W, Xie G. Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel. Int J Therm Sci. 2021;161: 106758. https://doi.org/10.1016/j.ijthermalsci.2020.106758.

    Article  Google Scholar 

  13. Ranjan A, SinghYadav S, Das K. Thermal and flow analysis of split drop-shaped pin fins for improved heat transfer rate. Inst Eng India Ser C. 2020;101(2):375–82. https://doi.org/10.1007/s40032-019-00548-4.

    Article  Google Scholar 

  14. Sakanova A, Tseng KJ. Comparison of pin-fin and finned shape heatsink for power electronics in future aircraft. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.03.020.

    Article  Google Scholar 

  15. Ayoobi A, Ramezanizadeh M, Alhuyi-Nazari M. Optimization of temperature distribution and heat flux functions for cylindrical and conical micro-fins by applying genetic algorithm. J Therm Anal Calorim. 2021;143:4119–30. https://doi.org/10.1007/s10973-020-09293-8.

    Article  CAS  Google Scholar 

  16. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim. 2021;143:3731–9. https://doi.org/10.1007/s10973-020-10382-x.

    Article  CAS  Google Scholar 

  17. Niranjan RS, Singh O, Ramkumar J. Numerical study on thermal analysis of square micro pin fins under forced convection. Heat Mass Transf. 2022;58:263–81. https://doi.org/10.1007/s00231-021-03105-x.

    Article  CAS  Google Scholar 

  18. Senthil Kumar R, Jayavel S. Forced convective air-cooling effect on electronic components of different geometries and orientations at flow shedding region. IEEE Trans Compon Packag Manuf Technol. 2018;8(4):597–605. https://doi.org/10.1109/TCPMT.2018.2797185.

    Article  Google Scholar 

  19. Alama MW, Bhattacharyya S, Souayeh B, Dey K, Hammami F, Rahimi-Gorji M, Biswas R. CPU heatsink cooling by triangular shape micro-pin-fin: numerical study. Int Commun Heat Mass Transf. 2020;112:104455. https://doi.org/10.1016/j.icheatmasstransfer.2019.104455.

    Article  Google Scholar 

  20. Ahmadian-Elmi M, Mashayekhi A, Nourazar SS, Vafai K. A comprehensive study on parametric optimization of the pin-fin heatsink to improve its thermal and hydraulic characteristics. Int J Heat Mass Transf. 2021;180: 121797. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121797.

    Article  Google Scholar 

  21. Xie G, Song Y, Simon TW. Turbulent flow characteristics and heat transfer enhancement in a rectangular channel with elliptical cylinders and protrusions of various heights. Numer Heat Transf Part A Appl. 2017. https://doi.org/10.1080/10407782.2017.1386507.

    Article  Google Scholar 

  22. Ravi S, Jadhav C. Balaji, Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls. Int J Therm Sci. 2016;105:57–74. https://doi.org/10.1016/j.ijthermalsci.2016.02.017.

    Article  Google Scholar 

  23. Xie Y, Shi D, Shen Z. Experimental and numericalinvestigation of heat transfer and friction performance for turbine blade tip cap with combined pin-findimple/protrusion structure. Int J Heat Mass Transf. 2017;104:1120–34. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.032.

    Article  Google Scholar 

  24. Luo L, Du W, Wang S, Sunden B, Zhang X. Flow structure and heat transfer characteristics of a 90°-turned pin-finned wedge duct with dimples at different locations. Numer Heat Transf Part A Appl. 2018. https://doi.org/10.1080/10407782.2017.1421373.

    Article  Google Scholar 

  25. Zhang D, Jing Q, Xie Y, Shen Z. Numerical prediction on turbine blade internal tip cooling with pin-fin and dimple/protrusion structures. Numer Heat Transf Part A Appl. 2016. https://doi.org/10.1080/10407782.2016.1214515.

    Article  Google Scholar 

  26. Du W, Luo L, Wang S, Zhang X. Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.10.052.

    Article  Google Scholar 

  27. Yang L, Wang Q, Rao Y. Searching for irregular pin-fin shapes for high temperature applications using deep learning methods. Int J Therm Sci. 2021;161:106746. https://doi.org/10.1016/j.ijthermalsci.2020.106746.

    Article  Google Scholar 

  28. Turkyilmazoglu M. An optimum profile of a special pin fin: full solutions. Int J Numer Meth Heat Fluid Flow. 2020;30(11):4945–54. https://doi.org/10.1108/HFF-11-2019-0801.

    Article  Google Scholar 

  29. Turkyilmazoglu M. Effective computation of solutions for nonlinear heat transfer problems in fins. ASME J Heat Transf. 2014;136(9):091901. https://doi.org/10.1115/1.4027772.

    Article  Google Scholar 

  30. Haque MR, Hridi TJ, Haque MM. CFD studies on thermal performance augmentation of heatsink using perforated twisted, and grooved pin fins. Int J Therm Sci. 2022;182:107832. https://doi.org/10.1016/j.ijthermalsci.2022.107832.

    Article  Google Scholar 

  31. Niranjan RS, Singh O, Ramkumar J Experimental investigation of forced convection on square micro-pin fins. In: Saha, P., Subbarao, P., Sikarwar, B. (eds) Advances in fluid and thermal engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6416-7_11

  32. Mate DM, Tale VT. Effects of pin fin arrangement its heat transfer characteristics on performance of heatsink. Mater Today Proc. 2021;43:2377–82. https://doi.org/10.1016/j.matpr.2021.01.940.

    Article  CAS  Google Scholar 

  33. Chang SW, Cheng TH. Thermal performance of channel flow with detached and attached pin-fins of hybrid shapes under inlet flow pulsation. Int J Heat Mass Transf. 2021;164:120554. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120554.

    Article  Google Scholar 

  34. S Yadav, KA Verma, M Ray, KM Pandey. Thermal analysis of semi circular pin fins for application in electronics cooling. Int J Recent Technol Eng; 2019. https://doi.org/10.35940/ijrte.A1954.078219.

  35. Choudhary V, Kumar M, KumarPatil A. Experimental investigation of enhanced performance of pin fin heatsink with wings. Appl Therm Eng. 2019;155:546–62. https://doi.org/10.1016/j.applthermaleng.2019.03.139.

    Article  Google Scholar 

  36. Chang SW, Wu P-S, Wei BS. Aerothermal performance improvement by array of pin-fins with spiral wings. Int J Therm Sci. 2021;170:107148. https://doi.org/10.1016/j.ijthermalsci.2021.107148.

    Article  Google Scholar 

  37. Khonsue O. Enhancement of the forced convective heat transfer on mini pin fin heatsinks with micro spiral fins. Heat Mass Transfer. 2018;54:563–70. https://doi.org/10.1007/s00231-017-2159-4.

    Article  Google Scholar 

  38. Varakhedkar A, Kumar R. Flow and Heat Transfer Characteristics of Square Cylinder with Protrusions at Different Channel Confinements. Int J Eng Adv Technol. 2019;8:2249–8958. https://doi.org/10.35940/ijeat.D1002.0484S219.

    Article  Google Scholar 

  39. Sajedi R, Osanloo B, Talati F, Taghilou M. Splitter plate application on the circular and square pin fin heatsinks. Microelectron Reliab. 2016;62:91–101. https://doi.org/10.1016/j.microrel.2016.03.026.

    Article  Google Scholar 

  40. Wei Du, Luo L, Wang S, Zhang X. Heat transfer characteristics in a pin finned channel with different dimple locations. Heat Transf Eng. 2019. https://doi.org/10.1080/01457632.2019.1637114.

    Article  Google Scholar 

  41. Adnan M, Ali M. Numerical analysis in enhancement of heat transfer using extended surfaces. In: 2021 International Bhurban conference on applied sciences and technologies (IBCAST), pp 767–773. https://doi.org/10.1109/IBCAST51254.2021.9393211.

  42. El-Said EMS, Abdelaziz GB, Sharshir SW, Elsheikh AH, Elsaid AM. Experimental investigation of the twist angle effects on thermo-hydraulic performance of a square and hexagonal pin fin array in forced convection. Int Commun Heat Mass Transf. 2021;126:105374. https://doi.org/10.1016/j.icheatmasstransfer.2021.105374.

    Article  Google Scholar 

  43. Chang SW, Wu P-S, Cai WL, Yu CH. Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array. Int J Heat Mass Transf. 2021;166: 120809. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120809.

    Article  Google Scholar 

  44. Saravanakumar T, SenthilKumar D. Heat transfer study on different surface textured pin fin heatsink. Int Commun Heat and Mass Transf. 2020;119:104902. https://doi.org/10.1016/j.icheatmasstransfer.2020.104902.

    Article  Google Scholar 

  45. Siddiqui JA, Lahane S, Gadekar AV, Lokawar VL. Experimental and computational evaluation of pressure drop and heat transfer characteristics in rectangular channel with helix grooved profile pin fins. Adv Energy Res Springer Proc Energy. 2020. https://doi.org/10.1007/978-981-15-2666-4_69.

    Article  Google Scholar 

  46. Eren M, Caliskan S. Effect of grooved pin-fins in a rectangular channel on heat transfer augmentation and friction factor using Taguchi method. Int J Heat Mass Transf. 2016;102:1108–22. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.005.

    Article  CAS  Google Scholar 

  47. Caliskan S, Dogan A, Kotcioglu I. Experimental investigation of heat transfer from different pin fin in a rectangular channel. Exp Heat Transf. 2018. https://doi.org/10.1080/08916152.2018.1526228.

    Article  Google Scholar 

  48. Jasim HA, Kassim MS, Hussain AA, Habeeb LJ. Investigation of heat transfer enhancement for different shapes pin-fin heatsink. J Mech Eng Res Dev. 2021;44(3):75–89.

    Google Scholar 

  49. Liang D, Chen W, Yinchao Ju, Chyu MK. Comparingendwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays. Appl Therm Eng. 2021;185: 116306. https://doi.org/10.1016/j.applthermaleng.2020.116306.

    Article  Google Scholar 

  50. Ma Y, Yan H, Hooman K, Xie G. Enhanced heat transfer in a pyramidal lattice sandwich panel by introducing pin-fins/protrusions/dimples. Int J Therm Sci. 2020;156: 106468. https://doi.org/10.1016/j.ijthermalsci.2020.106468.

    Article  Google Scholar 

  51. Li Y, Xie G, Boetcher SKS, Yan H. Heat transfer enhancement of X-lattice-cored sandwich panels by introducing pin fins, dimples or protrusions. Int J Heat Mass Transf. 2019;141:627–42. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.009.

    Article  Google Scholar 

  52. Abadi M, Ranjbar AA, Gorzin M, Bahrampoury R, Hosseini MJ. Effect of splitter angles and orientations attached to pin fin on heat transfer and hydraulic characteristics in a jet impingement rectangular channel. Alex Eng J. 2023;62:475–88. https://doi.org/10.1016/j.aej.2022.07.045.

    Article  Google Scholar 

  53. Wei Du, Luo L, Wang S, Zhang X. Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel. Int J Heat Mass Transf. 2018;127:111–29. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.045.

    Article  Google Scholar 

  54. Al-Karagoly MKU, Ayani M, Mamourian M, Bazaz SR. Experimental parametric study of a deep groove within a pin fin arrays regarding fin thermal resistance. Int Commun Heat Mass Transf. 2020;115:104615. https://doi.org/10.1016/j.icheatmasstransfer.2020.104615.

    Article  Google Scholar 

  55. Al-Damook A, Kapur N, Summers JL, HM,. Thompson computational design and optimisation of pin fin heatsinks with rectangular perforations. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.03.070.

    Article  Google Scholar 

  56. KH Dhanawade, HS Dhanawade, A Kashikar, S Matey, M Bhadane, S Sarraf, Thermal Analysis of circular pin-fin with rectangular slot at the center by forced convection. Int J Mech Ind Eng; 2020:14(11). World Academy of Science, Engineering and Technology

  57. Kore SS, Yadav R, Chinchanikar S, Tipole P, Dhole V. Experimental investigations of conical perforations on the thermal performance of cylindrical pin fin heatsink. Int J Ambient Energy. 2020. https://doi.org/10.1080/01430750.2020.1834451.

    Article  Google Scholar 

  58. Sa K-J, Afzal A, Kim K-Y. Performance analysis and design optimization of gapped pin-fin in a cooling channel. Heat Transf Eng. 2017. https://doi.org/10.1080/01457632.2017.1320170.

    Article  Google Scholar 

  59. Gupta D, Saha P, Roy S. Computational analysis of perforation effect on the thermo-hydraulic performance of micro pin-fin heatsink. Int J Therm Sci. 2021;163: 106857. https://doi.org/10.1016/j.ijthermalsci.2021.106857.

    Article  Google Scholar 

  60. Gupta D, Saha P, Roy S. Numerical investigation on heat transfer enhancement with perforated square micro-pin fin heatsink for electronic cooling application. In: 2019 IEEE 21st electronics packaging technology conference (EPTC); 2019, pp 241–246. https://doi.org/10.1109/EPTC47984.2019.9026623

  61. Bhanja MD, Patowari PK. Numerical investigation on heat transfer enhancement of heatsink using perforated pin fins with inline and staggered arrangement. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.07.053.

    Article  Google Scholar 

  62. Maji A, Bhanja D, Patowari PK, Choubey G, Deshamukhya T. Computational investigation of heat transfer analysis through perforated pin fins of different materials. AIP Conf Proc. 2017;1859:020009. https://doi.org/10.1063/1.4990162.

    Article  CAS  Google Scholar 

  63. Al-Sallami W, Al-Damook A, Thompson HM. A numerical investigation of thermal airflows over strip fin heatsinks. Int Commun Heat Mass Transf. 2016;75:183–91. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.014.

    Article  Google Scholar 

  64. FarhadIsmail Md, Saha SC. Enhancement of confined air jet impingement heat transfer using perforated pin-fin heatsinks. Appl Thermo-fluid Process Energy Syst Green Energy Technol. 2017. https://doi.org/10.1007/978-981-10-0697-5_10.

    Article  Google Scholar 

  65. Jagannath, R., Muralikrishna, Y. (2021). Numerical Investigation on Heat Transfer Characteristics of a Triangular Slotted Pin Fin Heatsink. In: Palanisamy, M., Ramalingam, V., Sivalingam, M. (eds) Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-4165-4_1

  66. Cheng WJ, Leng CIM, Jinn FJ. Optimization of pin perforation(s) induced flow dynamic for effective thermal dissipation. Int J Therm Sci. 2020;152:106308. https://doi.org/10.1016/j.ijthermalsci.2020.106308.

    Article  Google Scholar 

  67. Sahel D, Bellahcene L, Yousfi A, Subasi A. Numerical investigation and optimization of a heatsink having hemispherical pin fins. Int Commun Heat Mass Transfer. 2021;122: 105133. https://doi.org/10.1016/j.icheatmasstransfer.2021.105133.

    Article  Google Scholar 

  68. Huang C-H, Huang Y-R. An optimum design problem in estimating the shape of perforated pins and splitters in a plate-pin-fin heatsink. Int J Therm Sci. 2021;170: 107096. https://doi.org/10.1016/j.ijthermalsci.2021.107096.

    Article  Google Scholar 

  69. Tijani AS, Jaffri NB. Thermal analysis of perforated pin-fins heatsink under forced convection condition. Procedia Manuf. 2017. https://doi.org/10.1016/j.promfg.2018.06.025.

    Article  Google Scholar 

  70. Maji A, Deshamukhya T, Choubey G, Choubey A. Performance evaluation of perforated pin fin heatsink using particle swarm optimization and MCDM techniques. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10872-6.

    Article  Google Scholar 

  71. Huang C-H, Chen M-H. An estimation of the optimum shape and perforation diameters for pin fin arrays. Int J Heat Mass Transf. 2019;131:72–84. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.019.

    Article  Google Scholar 

  72. Chao-Han Wu, Tang H-W, Yang Y-T. Numerical simulation and optimization of turbulent flows through perforated circular pin fin heatsinks. Numer Heat Transf Part A Appl. 2017;71(2):172–88. https://doi.org/10.1080/10407782.2016.1264727.

    Article  CAS  Google Scholar 

  73. Maji A, Bhanja D, KumarPatowari P, Kundu B. Thermal analysis for heat transfer enhancement in perforated pin fins of various shapes with staggered arrays. Heat Transf Eng. 2018. https://doi.org/10.1080/01457632.2018.1429047.

    Article  Google Scholar 

  74. Hatem M, Abdellatif H, Hussein W. Enhancement of perforated pin-fins heatsinksunder forced convection. Int Res J Eng Technol. 2020;07(10):1440–5.

    Google Scholar 

  75. Rao CB, Muralikrishna Y. Heat transfer analysis of an equilateral triangular slotted pin fin: an experimental work. In: Palanisamy M, Ramalingam V, Sivalingam M (eds) Theoretical, computational, and experimental solutions to thermo-fluid systems. Lecture notes in mechanical engineering. Springer, Singapore; 2021. https://doi.org/10.1007/978-981-33-4165-4_2

  76. Ranjbar AM, Pouransari Z, Siavashi M. Improved design of heatsink including porous pin fins with different arrangements: a numerical turbulent flow and heat transfer study. Appl Therm Eng. 2021;198:117519. https://doi.org/10.1016/j.applthermaleng.2021.117519.

    Article  Google Scholar 

  77. Lee JS, Ha MY, Min JK. Numerical study on the mixed convection around inclined-pin fins on a heated plate in vertical channels with various bypass ratios. Case Stud Therm Eng. 2021;27:101310. https://doi.org/10.1016/j.csite.2021.101310.

    Article  Google Scholar 

  78. Naratoa P, Wae-hayeea M, Abdullahb MZ, Nuntadusita C. Effect of pin inclination angle on flow and heat transfer characteristics for a row of pins in a flow channel. Int Commun Heat Mass Transf. 2020;110:104396. https://doi.org/10.1016/j.icheatmasstransfer.2019.104396.

    Article  Google Scholar 

  79. Issa J, Saliba N, El Cheikh A. A numerical study of heat transfer and fluid flow in a channel with an array of pin fins in aligned and staggered configurations. In 17th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm); 2018. https://doi.org/10.1109/ITHERM.2018.8419645

  80. Mandal PK, Sengupta S, Rana SC, Bhanja D. Experimental and numerical investigation of square heatsink having staggered and inline pin fin arrays placed at different orientation. J Mech Sci Technol. 2021;35(11):5187–95. https://doi.org/10.1007/s12206-021-1036-8.

    Article  Google Scholar 

  81. Mandal PK, Sengupta S, Rana SC, Bhanja D. Effect of orientation angle in thermal performance analysis of a horizontal heatsink of perforated pin fins. In: 1st international conference on advances in mechanical engineering and nanotechnology (ICAMEN 2019), AIP Conf Proc 2148, 030003-1–030003-10. https://doi.org/10.1063/1.5123925

  82. Kamde GE, Dingare SV. Experimental and computational investigation of forced convection analysis of plate circular pin fin heatsinksover vertical base. J Inst Eng India Ser C. 2018;99(5):503–12. https://doi.org/10.1007/s40032-017-0363-0.

    Article  Google Scholar 

  83. Chu W-X, Chiou P-H, Wang C-C. Experimental and numerical study upon uniformity of impingement cooling with pin-fin heatsink. IEEE. 2019. https://doi.org/10.1109/TCPMT.2019.2926406.

    Article  Google Scholar 

  84. Xia G, Chen Z, Cheng L, Ma D, Zhai Y, Yang Y. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heatsinks. Int J Therm Sci. 2017;119:9–23. https://doi.org/10.1016/j.ijthermalsci.2017.05.015.

    Article  CAS  Google Scholar 

  85. Ravanji A, Zargarabadi MR. Effects of pin-fin shape on cooling performance of a circular jet impinging on a flat surface. Int J Therm Sci. 2021;161:106684. https://doi.org/10.1016/j.ijthermalsci.2020.106684.

    Article  Google Scholar 

  86. Huang C-H, Chiang P-C. An inverse study to design the optimal shape and position for delta winglet vortex generators of pin-fin heatsinks. Int J Therm Sci. 2016;109:374–85. https://doi.org/10.1016/j.ijthermalsci.2016.06.018.

    Article  Google Scholar 

  87. Yang Xu, Zhu H-R, Wei-jiang Xu, Liu C-L. Effect of pin fin arrangement on the heat transfer characteristics in a convergent channel with impingement. Int J Heat Mass Transf. 2018;125:629–39. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.111.

    Article  Google Scholar 

  88. Wen M-Y, Yeh C-H. Forced convective performance of perforated circular pin-fin heatsinks. Heat Mass Transf. 2017;53:1713–23. https://doi.org/10.1007/s00231-016-1933-z.

    Article  CAS  Google Scholar 

  89. Wen M-Y, Yeh C-H. Numerical study of thermal performance of perforated circular pin fin heatsinks in forced convection. Heat Mass Transf. 2017;53:2031–44. https://doi.org/10.1007/s00231-016-1960-9.

    Article  CAS  Google Scholar 

  90. Wen M-Y, Yeh C-H. Impingement thermal performance of perforated circular pin-fin heatsinks. Heat Mass Transf. 2018;54:1009–20. https://doi.org/10.1007/s00231-017-2206-1.

    Article  CAS  Google Scholar 

  91. Mohammed AA, Razuqi SA. Effect of air fan position on heat transfer performance of elliptical pin fin heatsink subjected to impinging air flow. J Therm Eng. 2021;6(7):1406–16. https://doi.org/10.18186/thermal.990714.

    Article  Google Scholar 

  92. Li H-Y, Liao W-R, Li T-Y, Chang Y-Z. Application of vortex generators to heat transfer enhancement of a pin-fin heatsink. Int J Heat Mass Transf. 2017;112:940–9. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.032.

    Article  Google Scholar 

  93. Mohammed AA, Razuqi SA. Performance of rectangular pin-fin heatsink subject to an impinging air flow. J Therm Eng. 2021;7(3):666–76.

    Article  CAS  Google Scholar 

  94. Effendi NS, Park JS, Kim BG, Kim KJ (2019) The optimization of hollow hybrid fin heat sinks under impinging airflows. In: 2019 IEEE 21st electronics packaging technology conference (EPTC), 2019, pp 413–416. https://doi.org/10.1109/EPTC47984.2019.9026713

  95. Yan H, Luo L, Zhang J, Wei Du, Wang S, Huang D. Flow structure and heat transfer characteristics of a pin-finned channel with upright/curved/inclined pin fins under stationary and rotating conditions. Int Commun Heat Mass Transf. 2021;127: 105483. https://doi.org/10.1016/j.icheatmasstransfer.2021.105483.

    Article  Google Scholar 

  96. Wang S, Yan H, Luo L, Du W, Sundén B, Zhang X. Heat transfer characteristics of a dimpled/protrusioned pin fin wedge duct with different converging angles for turbine blades. Numer Heat Transf Part A Appl. 2019;76(5):369–92. https://doi.org/10.1080/10407782.2019.1630235.

    Article  Google Scholar 

  97. Bai W, Liang D, Chen W, Chyu MK. Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array. Appl Therm Eng. 2019;162: 114214. https://doi.org/10.1016/j.applthermaleng.2019.114214.

    Article  Google Scholar 

  98. Al-damook A, Alkasmoul FS. Heat transfer and airflow characteristics enhancement of compact plate-pin fins heatsinks a review. Propuls Power Res. 2018;7(2):138–46. https://doi.org/10.1016/j.jppr.2018.05.003.

    Article  Google Scholar 

  99. Deepak Sharma KM, Pandey AjoyDebbarma, Choubey G. Numerical investigation of heat transfer enhancement of SiO2-water based nanofluids in light water nuclear reactor. Mater Today: Proc. 2020;4(9):10118–22. https://doi.org/10.1016/j.matpr.2017.06.332.

    Article  Google Scholar 

  100. Deshamukhya T, Bhanja D, Nath S, Maji A, Choubey G. Analytical study of temperature distribution in a rectangular porous fin considering both insulated and convective tip. AIP Conf Proc. 2017;1859: 020031. https://doi.org/10.1063/1.4990184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Senthil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesavan, D., Senthil Kumar, R. & Marimuthu, P. Heat transfer performance of air-cooled pin–fin heatsinks: a review. J Therm Anal Calorim 148, 623–649 (2023). https://doi.org/10.1007/s10973-022-11691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11691-z

Keywords

Navigation