Skip to main content
Log in

Microstructure and Thermomechanical Properties of Atmospheric Plasma-Sprayed Yb2O3 Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, a Yb2O3 coating was fabricated by the atmospheric plasma spray technique. The phase composition, microstructure, and thermal stability of the coating were examined. The thermal conductivity and thermal expansion behavior were also investigated. Some of the mechanical properties (elastic modulus, hardness, fracture toughness, and flexural strength) were characterized. The results reveal that the Yb2O3 coating is predominantly composed of the cubic Yb2O3 phase, and it has a dense lamellar microstructure containing defects. No mass change and exothermic phenomena are observed in the thermogravimetry and differential thermal analysis curves. The high-temperature x-ray diffraction results indicate that no phase transformation occurs from room temperature to 1500 °C, revealing the good phase stability of the Yb2O3 coating. The coefficient of thermal expansion of the Yb2O3 coating is (7.50-8.67) × 10−6 K−1 in the range of 200-1400 °C. The thermal conductivity is about 1.5 W m−1 K−1 at 1200 °C. The Yb2O3 coating has excellent mechanical properties and good damage tolerant. The unique combination of these properties implies that the Yb2O3 coating might be a promising candidate for T/EBCs applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines—History and Direction, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  2. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  Google Scholar 

  3. S. Zhu, M. Mizuno, Y. Nagano, J. Cao, Y. Kagawa, and H. Kaya, Creep and Fatigue Behavior in An Enhanced SiC/SiC Composite at High Temperature, J. Am. Ceram. Soc., 1998, 81(9), p 2269-2277

    Article  Google Scholar 

  4. N.S. Jacobson, Corrosion of Silicon-Based Ceramics in Combustion Environments, J. Am. Ceram. Soc., 1993, 76(1), p 3-28

    Article  Google Scholar 

  5. K.N. Lee, Current Status of Environmental Barrier Coatings for Si-based Ceramics, Surf. Coat. Technol., 2000, 133-134, p 1-7

    Article  Google Scholar 

  6. É. Darthout and F. Gitzhofer, Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings, J. Therm. Spray Technol., 2017, 26(8), p 1823-1837

    Article  Google Scholar 

  7. B.J. Harder, J. Ramírez-Rico, J.D. Almer, K.N. Lee, and K.T. Faber, Chemical and Mechanical Consequences of Environmental Barrier Coating Exposure to Calcium-Magnesium-Aluminosilicate, J. Am. Ceram. Soc., 2011, 94(S1), p S178-S185

    Article  Google Scholar 

  8. D.L. Poerschke, D.D. Hass, S. Eustis, G.G.E. Seward, J.S.V. Sluytman, and C.G. Levi, Stability and CMAS Resistance of Ytterbium-Silicate/Hafnate EBCs/TBC for SiC Composites, J. Am. Ceram. Soc., 2015, 98(1), p 278-286

    Article  Google Scholar 

  9. D.L. Poerschke, R.W. Jackson, and C.G. Levi, Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions, Annu. Rev. Mater. Res., 2017, 47, p 297-330

    Article  Google Scholar 

  10. D.L. Poerschke, J.S. Van Sluytman, K.B. Wong, and C.G. Levi, Thermochemical Compatibility of Ytterbia-(Hafnia/Silica) Multilayers for Environmental Barrier Coatings, Acta Mater., 2013, 61(18), p 6743-6755

    Article  Google Scholar 

  11. B.T. Richards, S. Sehr, F. de Franqueville, and H.N.G. Wadley, Fracture Mechanisms of Ytterbium Monosilicate Environmental Barrier Coatings During Cyclic Thermal Exposure, Acta Mater., 2016, 103, p 448-460

    Article  Google Scholar 

  12. B.T. Richards, M.R. Begley, and H.N.G. Wadley, Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure During Thermal Cycling in Water Vapor, J. Am. Ceram. Soc., 2015, 98(12), p 4066-4075

    Article  Google Scholar 

  13. B.T. Richards, K.A. Young, F.D. Francqueville, S. Sehr, M.R. Begley, and H.N.G. Wadley, Response of Ytterbium Disilicate-Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor, Acta Mater., 2016, 106, p 1-14

    Article  Google Scholar 

  14. M.H. Lu, H.M. Xiang, Z.H. Feng, X.Y. Wang, and Y.C. Zhou, Mechanical and Thermal Properties of Yb2SiO5: A promising Material for T/EBCs Applications, J. Am. Ceram. Soc., 2016, 99(4), p 1404-1411

    Article  Google Scholar 

  15. Z.L. Tian, L.Y. Zheng, J.M. Wang, and J.B. Yang, Damage Tolerance and Extensive Plastic Deformation of β-Yb2Si2O7 From Room to High Temperatures, J. Am. Ceram. Soc., 2015, 98(9), p 2843-2851

    Article  Google Scholar 

  16. Z.Q. Sun, Y.C. Zhou, J.Y. Wang, and M.S. Li, Mechanical Properties and Damage Tolerance of Y2SiO5, J. Eur. Ceram. Soc., 2008, 28(15), p 2895-2901

    Article  Google Scholar 

  17. Z.Q. Sun, Y.C. Zhou, J.Y. Wang, and M.S. Li, Γ-Y2Si2O7, A Machinable Silicate Ceramic: Mechanical Properties and Machinability, J. Am. Ceram. Soc., 2007, 90(8), p 2535-2541

    Article  Google Scholar 

  18. H. Yamamura, H. Nishino, and K. Kakinuma, Relationship Between Oxide-Ion Conductivity and Dielectric Relaxation in the Ln2Zr2O7 System Having Pyrochore-Type Compositions (Ln = Yb, Y, Gd, Eu, Sm, Nd, La), J. Phys. Chem. Solids, 2008, 69(7), p 1711-1717

    Article  Google Scholar 

  19. R.L. Jones, Some Aspects of the Hot Corrosion of Thermal Barrier Coatings, J. Therm. Spray Technol., 1997, 6(1), p 77-84

    Article  Google Scholar 

  20. P. Mechnich and W. Braue, Air Plasma-Sprayed Y2O3 Coatings for Al2O3/Al2O3 Ceramic Matrix Composites, J. Eur. Ceram. Soc., 2013, 33(13-14), p 2645-2653

    Article  Google Scholar 

  21. R.A. Golden and E.J. Opila, A Method for Assessing the Volatility of Oxides in High-Temperature High-Velocity Water Vapor, J. Eur. Ceram. Soc., 2016, 36(5), p 1135-1147

    Article  Google Scholar 

  22. E. Courcot, F. Rebillat, F. Teyssandier, and C. Louchet-Pouillerie, Stability of Rare Earth Oxides in a Moist Environment at Elevated Temperatures-Experimental and Thermodynamic Studies Part II: Comparison of the Rare Earth Oxides, J. Eur. Ceram. Soc., 2010, 30(9), p 1911-1917

    Article  Google Scholar 

  23. D.L. Ye, Inorganic Material Thermodynamics, 2nd ed., Metallurgical Industry Press, Beijing, 2002, p 1161-1162

    Google Scholar 

  24. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Phase Formation and Transformation in Alumina/YSZ Nanocomposite Coating Deposited by Suspension Plasma Spray Process, J. Therm. Spray Technol., 2010, 19(4), p 787-795

    Article  Google Scholar 

  25. DOE-National Energy Technology Laboratory, Protective Coatings for Gas Turbines. http://www.netl.doe.gov/File%20Library/Research/Coal/energy%20systems/turbines/handbook/4-4-2.pdf/, 2005. Accessed 12.06.11.

  26. X. Zhong, Y.R. Niu, H. Li, Y. Zeng, X.B. Zheng, C.X. Ding, and J.L. Sun, Microstructure Evolution and Thermomechanical Properties of Plasma-Sprayed Yb2SiO5 Coating During Thermal Aging, J. Am. Ceram. Soc., 2017, 100(5), p 1896-1906

    Article  Google Scholar 

  27. G.E. Youngblood, R.W. Rice, and R.P. Ingel, Thermal Diffusivity of Partially and Fully Stabilized (Yttria) Zirconia Single Crystals, J. Am. Ceram. Soc., 1988, 71(4), p 255-260

    Article  Google Scholar 

  28. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29

    Article  Google Scholar 

  29. X.F. Wang, H.M. Xiang, X. Sun, J.C. Liu, F. Hou, and Y.H. Zhou, Mechanical Properties and Damage Tolerance of Bulk Yb3Al5O12 Ceramic, J. Mater. Sci. Technol., 2015, 31(4), p 369-374

    Article  Google Scholar 

  30. S.R. Choi, D.M. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 330-342

    Article  Google Scholar 

  31. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093-2099

    Article  Google Scholar 

  32. K.N. Lee, J.I. Eldridge, and R.C. Robinson, Residual Stresses and Their Effects on the Durability of Environmental Barrier Coatings for SiC Ceramics, J. Am. Ceram. Soc., 2005, 88(12), p 3483-3488

    Article  Google Scholar 

  33. A.R. Boccaccini, Machinability and Brittleness of Glass-Ceramics, J. Mater. Process. Technol., 1997, 65(1-3), p 302-304

    Article  Google Scholar 

  34. Y.W. Bao, C.F. Hu, and Y.C. Zhou, Damage Tolerance of Nanolayer-Grained Ceramic: A Quantitative Estimation, Mater. Sci. Technol., 2006, 22(2), p 227-230

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering case study in extreme conditions using system mechanics approach (XDB22010202) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaran Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Niu, Y., Li, H. et al. Microstructure and Thermomechanical Properties of Atmospheric Plasma-Sprayed Yb2O3 Coating. J Therm Spray Tech 27, 959–967 (2018). https://doi.org/10.1007/s11666-018-0733-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0733-z

Keywords

Navigation