Skip to main content
Log in

Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Baldus, M. Jansen, and D. Sporn, Ceramic Fibres for Matrix Composites in High-Temperature Engine Applications, Science, 1999, 80(699), p 699-703. doi:10.1126/science.285.5428.699

    Article  Google Scholar 

  2. M. Belmonte, Advanced Ceramic Materials for High Temperature Applications, Adv. Eng. Mater., 2006, 8, p 693-703. doi:10.1002/adem.200500269

    Article  Google Scholar 

  3. A.G. Evans and D.B. Marshall, The Mechanical Behavior of Ceramic Matrix Composites, Acta Met., 1989, 37, p 2567-2583

    Article  Google Scholar 

  4. Y. Katoh, S.M. Dong, and A. Kohyama, Thermo-Mechanical Properties Carbide Composites Fabricated and Microstructure of Silicon by Nano-Infiltrated Transient Eutectoid Process, Fusion Eng. Des., 2002, 61-2, p 723-731

    Article  Google Scholar 

  5. R. Naslain, Design, Preparation and Properties of Non-oxide CMCs for Application in Engines and Nuclear Reactors: An overview, Compos. Sci. Technol., 2004, 64, p 155-170. doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  6. R.R. Naslain, Ceramic Matrix Composites: Matrices and Processing, Encylopedia Sci. Technol. Mater., 2000, doi:10.1016/B978-0-12-803581-8.02317-1

    Google Scholar 

  7. A. Misra, 12—Composite Materials for Aerospace Propulsion Related to Air and Space Transportation A2—Njuguna, J BT—Lightweight Composite Structures in Transport, Light. Compos. Struct. Transp., 2016, doi:10.1016/B978-1-78242-325-6.00012-8

    Google Scholar 

  8. S.N. Basu and V.K. Sarin, Thermal and Environmental Barrier Coatings for Si-Based Ceramics, Elsevier, 2014, doi:10.1016/B978-0-08-096527-7.00036-2

    Google Scholar 

  9. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804-809. doi:10.1038/nmat4687

    Article  Google Scholar 

  10. H.E. Eaton and G.D. Linsey, Accelerated Oxidation of SiC CMC’s by Water Vapor and Protection via Environmental Barrier Coating Approach, J. Eur. Ceram. Soc., 2002, 22, p 2741-2747. doi:10.1016/S0955-2219(02)00141-3

    Article  Google Scholar 

  11. N. Al Nasiri, N. Patra, N. Ni, D.D. Jayaseelan, and W.E. Lee, Oxidation Behaviour of SiC/SiC Ceramic Matrix Composites in Air, J. Eur. Ceram. Soc., 2016, 36, p 3293-3302. doi:10.1016/j.jeurceramsoc.2016.05.051

    Article  Google Scholar 

  12. N.S. Jacobson, Corrosion of Silicon-Based Ceramics in Combustion Environments, J. Am. Ceram. Soc., 1993, 76, p 3-28. doi:10.1111/j.1151-2916.1993.tb03684.x

    Article  Google Scholar 

  13. E.J. Opila, Oxidation and Volatilization of Silica Formers in Water Vapor, J. Am. Ceram. Soc., 2003, 86, p 1238-1248. doi:10.1111/j.1151-2916.2003.tb03459.x

    Article  Google Scholar 

  14. P.J. Meschter, E.J. Opila, and N.S. Jacobson, Water Vapor-Mediated Volatilization of High-Temperature Materials, Annu. Rev. Mater. Res., 2013, 43, p 559-588. doi:10.1146/annurev-matsci-071312-121636

    Article  Google Scholar 

  15. P.F. Tortorelli and K.L. More, Effects of High Water-Vapor Pressure on Oxidation of Silicon Carbide at 1200 °C, J. Am. Ceram. Soc., 2003, 86, p 1249-1255. doi:10.1111/j.1151-2916.2003.tb03460.x

    Article  Google Scholar 

  16. E.J. Opila and R.E. Hann, Paralinear Oxidation of CVD SiC in Water Vapor, J. Am. Ceram. Soc., 1997, 80, p 197-205. doi:10.1111/j.1151-2916.1997.tb02810.x

    Article  Google Scholar 

  17. E. Courcot, F. Rebillat, F. Teyssandier, From the Volatility of Simple Oxides to that of Mixed Oxides: Thermodynamic and Experimental Approaches, in: Ceram. Trans., 2010: pp. 235–244

  18. E. Courcot, F. Rebillat, F. Teyssandier, and C. Louchet-Pouillerie, Thermochemical Stability of the Y2O3–SiO2 System, J. Eur. Ceram. Soc., 2010, 30, p 905-910. doi:10.1016/j.jeurceramsoc.2009.09.007

    Article  Google Scholar 

  19. N. Maier, K.G. Nickel, and G. Rixecker, High Temperature Water Vapour Corrosion of Rare Earth Disilicates (Y, Yb, Lu)2Si2O7 in the Presence of Al(OH)3 Impurities, J. Eur. Ceram. Soc., 2007, 27, p 2705-2713

    Article  Google Scholar 

  20. Y. Wang and J. Liu, First-Principles Investigation on the Corrosion Resistance of Rare Earth Disilicates in Water Vapor, J. Eur. Ceram. Soc., 2009, 29, p 2163-2167

    Article  Google Scholar 

  21. J. Liu, L. Zhang, Q. Liu, L. Cheng, and Y. Wang, Structure Design and Fabrication of Environmental Barrier Coatings for Crack Resistance, J. Eur. Ceram. Soc., 2014, 34, p 2005-2012. doi:10.1016/j.jeurceramsoc.2013.12.049

    Article  Google Scholar 

  22. B.T. Richards, K.A. Young, F. De Francqueville, S. Sehr, M.R. Begley, and H.N.G. Wadley, Response of Ytterbium Disilicate-Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor, Acta Mater., 2016, 106, p 1-14. doi:10.1016/j.actamat.2015.12.053

    Article  Google Scholar 

  23. F. Stolzenburg, P. Kenesei, J. Almer, K.N. Lee, M.T. Johnson, and K.T. Faber, The Influence of Calcium-Magnesium-Aluminosilicate Deposits on Internal Stresses in Yb2Si2O7 Multilayer Environmental Barrier Coatings, Acta Mater., 2016, 105, p 189-198. doi:10.1016/j.actamat.2015.12.016

    Article  Google Scholar 

  24. K.N. Lee, D.S. Fox, and N.P. Bansal, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, J. Eur. Ceram. Soc., 2005, 25, p 1705-1715. doi:10.1016/j.jeurceramsoc.2004.12.013

    Article  Google Scholar 

  25. Z. Tian, L. Zheng, J.J. Wang, P. Wan, J. Li, and J.J. Wang, Theoretical and Experimental Determination of the Major Thermo-Mechanical Properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for Environmental and Thermal Barrier Coating Applications, J. Eur. Ceram. Soc., 2016, 36, p 189-202. doi:10.1016/j.jeurceramsoc.2015.09.013

    Article  Google Scholar 

  26. S. Ueno, D. Doni Jayaseelan, H. Kita, T. Ohji, and H.-T. Lin, Comparison of Water Vapor Corrosion Behaviors of Ln2Si2O7 (Ln = Yb and Lu) and ASiO4 (A = Ti, Zr and Hf) EBC’s, Key Eng. Mater., 2006, 317–318, p 557-560

    Article  Google Scholar 

  27. S. Ueno, D.D. Jayaseelan, and T. Ohji, Water Vapor Corrosion Behavior of Lutetium Silicates at High Temperature, Ceram. Int., 2006, 32, p 451-455. doi:10.1016/j.ceramint.2005.03.022

    Article  Google Scholar 

  28. S. Ueno, D.D. Jayaseelan, T. Ohji, and H.T. Lin, Recession Mechanism of Lu2Si2O7 Phase in High Speed Steam Jet Environment at High Temperatures, Ceram. Int., 2006, 32, p 775-778. doi:10.1016/j.ceramint.2005.05.014

    Article  Google Scholar 

  29. N.S. Jacobson, D.S. Fox, J.L. Smialek, E.J. Opila, C. Dellacorte, and K.N. Lee, Performance of Ceramics in Severe Environments. ASM Handbook, Corros. Mater., 2005, doi:10.1361/asmhba0003842

    Google Scholar 

  30. J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma spray Synthesis of Nanomaterial Powders and Deposits, Mater. Sci. Eng., A, 1997, 238, p 275-286. doi:10.1016/S0921-5093(96)10568-2

    Article  Google Scholar 

  31. Y. Shen, V.A.B. Almeida, and F. Gitzhofer, Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying, J. Therm. Spray Technol., 2011, 20, p 145-153. doi:10.1007/s11666-010-9583-z

    Article  Google Scholar 

  32. E.H. Jordan, C. Jiang, and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24, p 1153-1165. doi:10.1007/s11666-015-0272-9

    Article  Google Scholar 

  33. C. Jiang, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2015, 24, p 895-906. doi:10.1007/s11666-015-0283-6

    Article  Google Scholar 

  34. P. Fauchais, A. Vardelle, Advanced Plasma Spray Applications, in: H. Salimi Jazi (Ed.), Adv. Plasma Spray Appl., InTech, 2012, p 149-188. doi:10.5772/1921.

  35. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk et al., Superior Thermal Barrier Coatings using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13, p 57-65. doi:10.1361/10599630418121

    Article  Google Scholar 

  36. G. Bertolissi, C. Chazelas, G. Bolelli, L. Lusvarghi, M. Vardelle, and A. Vardelle, Engineering the Microstructure of Solution Precursor Plasma-sprayed Coatings, J. Therm. Spray Technol., 2012, 21, p 1148-1162. doi:10.1007/s11666-012-9789-3

    Article  Google Scholar 

  37. É. Darthout and F. Gitzhofer, Structure Stabilization by Zirconia Pinning Effect of Y2Si2O7 Environmental Barrier Coatings Synthesized by Solution Precursor Plasma Spraying Process, Surf. Coatings Technol., 2017, 309, p 1081-1088. doi:10.1016/j.surfcoat.2016.10.015

    Article  Google Scholar 

  38. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen et al., Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coatings Technol., 2004, 183, p 51-61. doi:10.1016/j.surfcoat.2003.09.071

    Article  Google Scholar 

  39. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coatings Technol., 2008, 202, p 4309-4317. doi:10.1016/j.surfcoat.2008.04.003

    Article  Google Scholar 

  40. E. Darthout, A. Quet, N. Braidy, and F. Gitzhofer, Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry, J. Therm. Spray Technol., 2014, 23, p 325-332. doi:10.1007/s11666-013-9987-7

    Article  Google Scholar 

  41. É. Darthout, G. Laduye, and F. Gitzhofer, Processing Parameter Effects and Thermal Properties of Y2Si2O7 Nanostructured Environmental Barrier Coatings Synthesized by Solution Precursor Induction Plasma Spraying, J. Therm. Spray Technol., 2016, 25, p 1264-1279. doi:10.1007/s11666-016-0450-4

    Article  Google Scholar 

  42. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10. doi:10.1016/S0955-2219(03)00129-8

    Article  Google Scholar 

  43. C.M. Weyant, K.T. Faber, J. Almer, and J.V. Guiheen, Residual Stress and Microstructural Evolution in Tantalum Oxide Coatings on Silicon Nitride, J. Am. Ceram. Soc., 2005, 88, p 2169-2176. doi:10.1111/j.1551-2916.2005.00396.x

    Article  Google Scholar 

  44. W.D. Kingery, Factors Affecting Thermal Stress Resistance, J. Am. Ceram. Soc., 1955, 38, p 3-15. doi:10.1111/j.1151-2916.1955.tb14545.x

    Article  Google Scholar 

  45. J.C. Han, Thermal Shock Resistance of Ceramic Coatings, Acta Mater., 2007, 55, p 3573-3581. doi:10.1016/j.actamat.2007.02.007

    Article  Google Scholar 

  46. A. Saha, S. Seal, B. Cetegen, E. Jordan, A. Ozturk, and S. Basu, Thermo-Physical Processes in Cerium Nitrate Precursor Droplets Injected into High Temperature Plasma, Surf. Coatings Technol., 2009, 203, p 2081-2091. doi:10.1016/j.surfcoat.2008.09.018

    Article  Google Scholar 

  47. I. Castillo and R.J. Munz, Transient Heat, Mass and Momentum Transfer of an Evaporating Stationary Droplet Containing Dissolved Cerium Nitrate in a RF Thermal Argon-oxygen Plasma Under Reduced Pressure, Int. J. Heat Mass Transf., 2007, 50, p 240-256. doi:10.1016/j.ijheatmasstransfer.2006.06.023

    Article  Google Scholar 

  48. G.L. Messing, S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis, J. Am. Ceram. Soc., 1993, 76, p 2707-2726. doi:10.1111/j.1151-2916.1993.tb04007.x

    Article  Google Scholar 

  49. M.I. Boulos, RF Induction Plasma Spraying: State-of-the-art Review, J. Therm. Spray Technol., 1992, 1, p 33-40. doi:10.1007/BF02657015

    Article  Google Scholar 

  50. J.D’Errico, Surface Fitting Using Gridfit, MATLAB Cent. File Exch. (2005). http://fr.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit

  51. R.C. Robinson and J.L. Smialek, SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: I, Experimental Results and Empirical Model, J. Am. Ceram. Soc., 1999, 82, p 1817-1825. doi:10.1111/j.1151-2916.1999.tb02004.x

    Article  Google Scholar 

  52. J.L. Smialek, R.C. Robinson, E.J. Opila, D.S. Fox, and N.S. Jacobson, SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions, Adv. Compos. Mater., 1999, 8, p 33-45. doi:10.1163/156855199X00056

    Article  Google Scholar 

  53. E.J. Opila, D.S. Fox, and N.S. Jacobson, Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure, J. Am. Ceram. Soc., 1997, 12, p 1009-1012. doi:10.1111/j.1151-2916.1997.tb02935.x

    Google Scholar 

  54. J. Welty, G.L. Rorrer, and D.G. Foster, Fundamentals of Momentum, Heat, and Mass Transfer, Wiley, Hoboken, 2014

    Google Scholar 

  55. R.A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases At High Temperatures, 1962.

  56. J.O. Hirschfelder, R.B. Bird, and E.L. Spotz, The Transport Properties of Gases and Gaseous Mixtures, Chem. Rev., 1949, 44, p 205-231

    Article  Google Scholar 

  57. V. Angelici Avincola, D. Cupid, and H.J. Seifert, Thermodynamic Modeling of the Silica Volatilization in Steam Related to Silicon Carbide Oxidation, J. Eur. Ceram. Soc., 2015, 35, p 3809-3818. doi:10.1016/j.jeurceramsoc.2015.05.036

    Article  Google Scholar 

  58. N.S. Jacobson, E.J. Opila, D.L. Myers, and E.H. Copland, Thermodynamics of Gas Phase Species in the Si-O-H System, J. Chem. Thermodyn., 2005, 37, p 1130-1137. doi:10.1016/j.jct.2005.02.001

    Article  Google Scholar 

  59. A. Hashimoto, The Effect of H2O Gas on Volatilities of Planet-Forming Major Elements: I. Experimental Determination of Thermodynamic Properties of Ca-, Al-, and Si-hydroxide Gas Molecules And its Application to the Solar Nebula, Geochim. Cosmochim. Acta, 1992, 56, p 511-532. doi:10.1016/0016-7037(92)90148-C

    Article  Google Scholar 

  60. R.A. Golden and E.J. Opila, A Method for Assessing the Volatility of Oxides in High-temperature High-velocity Water Vapor, J. Eur. Ceram. Soc., 2016, 36, p 1135-1147. doi:10.1016/j.jeurceramsoc.2015.11.016

    Article  Google Scholar 

  61. S.L. Dos Santos, E. Lucato, O.H. Sudre, and D.B. Marshall, A Method for Assessing Reactions of Water Vapor with Materials in High-speed, High-temperature Flow, J. Am. Ceram. Soc., 2011, 94, p s186-s195. doi:10.1111/j.1551-2916.2011.04556.x

    Article  Google Scholar 

  62. A.G. Evans and J.W. Hutchinson, The Thermomechanical Integrity of Thin Films and Multilayers, Acta Metall. Mater., 1995, 43, p 2507-2530. doi:10.1016/0956-7151(94)00444-M

    Article  Google Scholar 

  63. J. Kováčik, Correlation Between Young’s Modulus and Porosity in Porous Materials, J. Mater. Sci. Lett., 1999, 18, p 1007-1010. doi:10.1023/A:1006669914946

    Article  Google Scholar 

  64. B. Himmel, T. Gerber, W. Heyer, and W. Blau, X-ray Diffraction Analysis of SiO2 Structure, J. Mater. Sci., 1987, 22, p 1374-1378. doi:10.1007/BF01233136

    Article  Google Scholar 

  65. R.L. Withers, J.G. Thompson, and T.R. Welberry, The Structure and Microstructure of α-Cristobalite and Its Relationship to β-Cristobalite, Phys. Chem. Miner., 1989, 16, p 517-523. doi:10.1007/BF00202206

    Article  Google Scholar 

  66. R.C. Breneman, J.W. Halloran, and A. Arbor, Hysteresis Upon Repeated Cycling Through the Beta-Alpha Cristobalite Transformation, J. Ceram. Sci. Technol., 2015, 62, p 55-61. doi:10.4416/JCST2014-00048

    Google Scholar 

  67. K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.C. Robinson, N.P. Bansal et al., Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, J. Am. Ceram. Soc., 2003, 86, p 1299-1306. doi:10.1111/j.1151-2916.2003.tb03466.x

    Article  Google Scholar 

  68. C.V. Cojocaru, D. Lévesque, C. Moreau, and R.S. Lima, Performance of Thermally Sprayed Si/mullite/BSAS Environmental Barrier Coatings Exposed to Thermal Cycling in Water Vapor Environment, Surf. Coatings Technol., 2013, 216, p 215-223. doi:10.1016/j.surfcoat.2012.11.043

    Article  Google Scholar 

  69. B.T. Richards, M.R. Begley, and H.N.G. Wadley, Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure During Thermal Cycling in Water Vapor, J. Am. Ceram. Soc., 2015, 98, p 4066-4075. doi:10.1111/jace.13792

    Article  Google Scholar 

  70. C.S. Tedmon, The Effect of Oxide Volatilization on the Oxidation Kinetics of Cr and Fe-Cr Alloys, J. Electrochem. Soc., 1966, 113, p 766. doi:10.1149/1.2424115

    Article  Google Scholar 

  71. D.L. Poerschke, R.W. Jackson, and C.G. Levi, Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions, Annu. Rev. Mater. Res., 2016, 46, p 235-262

    Article  Google Scholar 

  72. S. Ueno, T. Ohji, and H.T. Lin, Recession Behavior of Lu2SiO5 Under a High Speed Steam Jet at High Temperatures, Ceram. Int., 2011, 37, p 1185-1189. doi:10.1016/j.ceramint.2010.11.029

    Article  Google Scholar 

  73. S. Ueno, D.D. Jayaseelan, T. Ohji, N. Kondo, and S. Kanzaki, Comparison of Water Vapor Corrosion Mechanisms of Polycrystalline and Eutectic Lu2Si2O7, J. Ceram. Process. Res., 2004, 5, p 153-156

    Google Scholar 

  74. B.T. Richards and H.N.G. Wadley, Plasma Spray Deposition of Tri-Layer Environmental Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34, p 3069-3083. doi:10.1016/j.jeurceramsoc.2014.04.027

    Article  Google Scholar 

  75. S. Ueno, D.D. Jayaseelan, and T. Ohji, Development of Oxide-Based EBC for Silicon Nitride, Int. J. Appl. Ceram. Technol., 2004, 1, p 362-373

    Article  Google Scholar 

  76. S. Ueno, T. Ohji, and H.-T. Lin, Corrosion and Recession of Mullite in Water Vapor Environment, J. Eur. Ceram. Soc., 2008, 28, p 431-435. doi:10.1016/j.jeurceramsoc.2007.03.006

    Article  Google Scholar 

  77. M. Fritsch, H. Klemm, M. Herrmann, and B. Schenk, Corrosion of Selected Ceramic Materials in Hot Gas Environment, J. Eur. Ceram. Soc., 2006, 26, p 3557-3565. doi:10.1016/j.jeurceramsoc.2006.01.015

    Article  Google Scholar 

  78. E.J. Opila and D.L. Myers, Alumina Volatility in Water Vapor at Elevated Temperatures, J. Am. Ceram. Soc., 2004, 87, p 1701-1705. doi:10.1111/j.1551-2916.2004.01701.x

    Article  Google Scholar 

  79. M. Fritsch and H. Klemm, The Water–Vapour hot Gas Corrosion Behavior of Al2O3-Y2O3 Materials, Y2SiO5 and Y3Al5O12-Coated Alumina in a Combustion Environment. in: A.W. and E.L.-C.D. Zhu, U. Schulz (Eds.), Adv. Ceram. Coatings Interfaces Ceram. Eng. Sci. Proc., John Wiley, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006, p 148-159. doi:10.1002/9780470291320.ch14.

  80. K.N. Lee, Environmental Barrier Coatings for SiCf/SiC, in: Ceram. Matrix Compos. Mater. Model. Technol., John Wiley & Sons, Inc., 2014: pp. 430–451. doi:10.1002/9781118832998.ch15.

  81. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd ed., CRC, Boca Raton, 2006

    Google Scholar 

  82. Z. Sun, Y. Zhou, J. Wang, and M. Li, Thermal Properties and Thermal Shock Resistance of γ-Y2Si2O7, J. Am. Ceram. Soc., 2008, 91, p 2623-2629. doi:10.1111/j.1551-2916.2008.02470.x

    Article  Google Scholar 

  83. Z. Sun, M. Li, and Y. Zhou, Thermal Properties of Single-Phase Y2SiO5, J. Eur. Ceram. Soc., 2009, 29, p 551-557. doi:10.1016/j.jeurceramsoc.2008.07.026

    Article  Google Scholar 

  84. H. Le Chatelier, La Silice et les Silicates, A. Hermann, Paris, 1914

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kossi E. Béré for its technical support during the plasma spray process. They are also grateful to the Center of Characterization of Materials (Sherbrooke, QC, CA) and to NACOMAT partners (Bordeaux, France) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Émilien Darthout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darthout, É., Gitzhofer, F. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings. J Therm Spray Tech 26, 1823–1837 (2017). https://doi.org/10.1007/s11666-017-0635-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0635-5

Keywords

Navigation