Skip to main content
Log in

Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique ‘low-temperature’ coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Abbreviations

A :

Cross-sectional area of nozzle

A * :

Cross-sectional area of nozzle throat

A p :

Cross-sectional area of particle

A s :

Surface area of particle

c * :

Sound speed at the nozzle throat

c 1, c 2 :

Fitting parameters

C D :

Particle drag coefficient

C p :

Gas specific heat at constant pressure

C particle :

Particle specific heat

d * :

Diameter of nozzle cross-sectional area at the throat

d e :

Diameter of nozzle cross-sectional area at the exit

d p :

Particle diameter

\(d_{\text{p}}^{\text{ref}}\) :

Reference particle diameter

e :

Fitting parameter

F b :

Body force imposed on particle

h :

Convective heat transfer coefficient

l :

Axial position at the nozzle central line

L st :

Thickness of the stagnant region

L d :

Nozzle divergent length

m p :

Particle mass

M :

Mach number

M e :

Mach number at the nozzle exit

M P :

Particle Mach number

M w :

Molar mass

Nu:

Nusselt number

P 0 :

Gas stagnation pressure

P :

Gas static pressure

P e :

Gas static pressure at the nozzle exit

Pr:

Prandtl number

q :

Heat flux

r :

Recovery coefficient

R :

Gas constant

Re:

Gas Reynolds number

Rep :

Particle Reynolds number

S M :

Source terms in momentum equation

S T :

Source terms in energy equation

t :

Time

T :

Gas temperature

T 0 :

Gas stagnation temperature

T e :

Gas temperature at the nozzle exit

T f :

Temperature at the fluid side

T m :

Material melting point

T p :

Particle temperature

T r :

Recovery temperature

T solid :

Temperature of solid phase

T w :

Temperature at the wall side

u i :

Gas velocity components

v :

Gas velocity

v cr :

Critical velocity

\(v_{\text{cr}}^{\text{ref}}\) :

Reference critical velocity

v e :

Gas velocity at the nozzle exit

v p :

Particle velocity

\(v_{\text{p}}^{\text{exit}}\) :

Particle velocity at the nozzle exit

\(v_{\text{p}}^{\text{impact}}\) :

Particle velocity upon impact

μ:

Dynamic viscosity

λ:

Gas thermal conductivity

λsolid :

Solid thermal conductivity

γ:

Ratio of gas specific heats

δ:

Fitting parameter

ρ:

Gas density

ρ0 :

Gas stagnation density

ρp :

Particle density

ρst :

Average gas density in the stagnant region

\(\left( {\frac{{\partial {T}}}{{\partial {n}}}} \right)_{\text{w}}\) :

Temperature gradient at the wall surface

References

  1. A.P. Alkhimov, V.F. Kosareve, and A.N. Papyrin, A Method of Cold Gas-Dynamic Spray Deposition, Dokl. Akad. Nauk SSSR., 1990, 315, p 1062-1065

    Google Scholar 

  2. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159, p 49-51

    Google Scholar 

  3. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng., 2004, 368, p 222-230

    Article  Google Scholar 

  4. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  5. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  Google Scholar 

  6. B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling Via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18, p 934-943

    Article  Google Scholar 

  7. M. Bray, A. Cockburn, and W. O’Neill, The Laser-Assisted Cold Spray Process and Deposit Characterisation, Surf. Coat. Technol., 2009, 203, p 2851-2857

    Article  Google Scholar 

  8. M. Grujicic, C. Tong, W.S. DeRosset, and D. Helfritch, Flow Analysis and Nozzle-Shape Optimization for the Cold-Gas Dynamic-Spray Process, Proc. Inst. Mech. Eng. Part B, 2003, 217, p 1603-1613

    Article  Google Scholar 

  9. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200, p 4424-4432

    Article  Google Scholar 

  10. S.P. Pardhasaradhi, V. Venkatachalapathy, S.V. Joshi, and S. Govindan, Optical Diagnostics Study of Gas Particle Transport Phenomena in Cold Gas Dynamic Spraying and Comparison with Model Predictions, J. Therm. Spray Technol., 2008, 17, p 551-563

    Article  Google Scholar 

  11. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Technol., 2002, 11, p 496-507

    Article  Google Scholar 

  12. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7, p 205-212

    Article  Google Scholar 

  13. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11, p 542-550

    Article  Google Scholar 

  14. T. Han, Z. Zhao, B.A. Gillispie, and J.R. Smith, Effects of Spray Conditions on Coating Formation by the Kinetic Spray Process, J. Therm. Spray Technol., 2005, 14, p 373-383

    Article  Google Scholar 

  15. M.W. Lee, J.J. Park, D.Y. Kim, S.S. Yoon, H.Y. Kim, S.C. James, S. Chandra, and T. Coyle, Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications, J. Therm. Spray Technol., 2011, 20, p 1085-1097

    Article  Google Scholar 

  16. V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20, p 425-431

    Article  Google Scholar 

  17. S.V. Klinkov, V.F. Kosarev, A. Sova, and I. Smurov, Calculation of Particle Parameters for Cold Spraying of Metal-Ceramic Mixtures, J. Therm. Spray Technol., 2009, 18, p 944-956

    Article  Google Scholar 

  18. M. Winnicki, A. Ma, G. Dudzik, M. Rutkowska-gorczyca, M. Marciniak, and K. Abramski, Numerical and Experimental Analysis of Copper Particles Velocity in Low-Pressure Cold Spraying Process, Surf. Coat. Technol., 2014, 268, p 1-11

    Google Scholar 

  19. F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201, p 1942-1947

    Article  Google Scholar 

  20. S. Yin, M. Zhang, Z. Guo, H. Liao, and X. Wang, Numerical Investigations on the Effect of Total Pressure and Nozzle Divergent Length on the Flow Character and Particle Impact Velocity in Cold Spraying, Surf. Coat. Technol., 2013, 232, p 290-297

    Article  Google Scholar 

  21. A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10, p 375-381

    Article  Google Scholar 

  22. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2003, 12, p 265-281

    Article  Google Scholar 

  23. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, K. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 1161-1176

    Article  Google Scholar 

  24. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education Limited, Harlow, 2007

    Google Scholar 

  25. T. Han, B.A. Gillispie, and Z.B. Zhao, An Investigation on Powder Injection in the High-Pressure Cold Spray Process, J. Therm. Spray Technol., 2009, 18, p 320-330

    Article  Google Scholar 

  26. E. Farvardin, O. Stier, V. Lüthen, and A. Dolatabadi, Effect of using liquid feedstock in a high pressure cold spray nozzle, J. Therm. Spray Technol., 2011, 20, p 307-316

    Article  Google Scholar 

  27. K. Taylor, B. Jodoin, and J. Karov, Particle Loading Effect in Cold Spray, J. Therm. Spray Technol., 2006, 15, p 273-279

    Article  Google Scholar 

  28. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price, and P.H. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20, p 608-620

    Article  Google Scholar 

  29. G. Huang, D. Gu, X. Li, L. Xing, and H. Wang, Numerical Simulation on Syphonage Effect of Laval Nozzle for Low Pressure Cold Spray System, J. Mater. Process. Technol., 2014, 214, p 2497-2504

    Article  Google Scholar 

  30. R. Ghias, Simulation of Flow Through Supersonic Cruise Nozzle: A Validation Study, Thermal & Fluids Analysis Workshop, Newport News, 2011

    Google Scholar 

  31. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray process, Surf. Coat. Technol., 2008, 202, p 1443-1454

    Article  Google Scholar 

  32. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, and J. Villafuerte, Numerical Simulation of the Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2006, 15, p 518-523

    Article  Google Scholar 

  33. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16, p 634-642

    Article  Google Scholar 

  34. A. Sova, M. Doubenskaia, S. Grigoriev, A. Okunkova, and I. Smurov, Parameters of the Gas-Powder Supersonic Jet in Cold Spraying Using a Mask, J. Therm. Spray Technol., 2013, 22, p 551-556

    Article  Google Scholar 

  35. S.H. Zahiri, T.D. Phan, S.H. Masood, and M. Jahedi, Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet, J. Therm. Spray Technol., 2014, 23, p 919-933

    Article  Google Scholar 

  36. M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, and R. Nagarajah, Application of a Holistic 3D Model to Estimate State of Cold Spray Titanium Particles, Mater. Des., 2016, 89, p 1227-1241

    Google Scholar 

  37. A. Hadjadj, Y. Perrot, and S. Verma, Numerical Study of Shock/Boundary Layer Interaction in Supersonic Overexpanded Nozzles, Aerosp. Sci. Technol., 2015, 42, p 158-168

    Article  Google Scholar 

  38. A. Balabel, A.M. Hegab, M. Nasr, and S.M. El-Behery, Assessment of Turbulence Modeling for Gas Flow in Two-Dimensional Convergent-Divergent Rocket Nozzle, Appl. Math. Model., 2011, 35, p 3408-3422

    Article  Google Scholar 

  39. H. Katanoda, M. Fukuhara, and N. Iino, Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray, J. Therm. Spray Technol., 2007, 16, p 627-633

    Article  Google Scholar 

  40. S. Yin, X.F. Wang, W.Y. Li, and B.P. Xu, Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD, J. Therm. Spray Technol., 2010, 19, p 1155-1162

    Article  Google Scholar 

  41. A. Sova, S. Grigoriev, A. Kochetkova, and I. Smurov, Influence of Powder Injection Point Position on Efficiency of Powder Preheating in Cold Spray: Numerical Study, Surf. Coat. Technol., 2014, 242, p 226-231

    Article  Google Scholar 

  42. W.Y. Li, H. Liao, H.T. Wang, C.J. Li, G. Zhang, and C. Coddet, Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253, p 708-713

    Article  Google Scholar 

  43. W.-Y. Li and C.-J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14, p 391-396

    Article  Google Scholar 

  44. W.-Y. Li, H. Liao, G. Douchy, and C. Coddet, Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation with 316L Stainless Steel Powder, Mater. Des., 2007, 28, p 2129-2137

    Article  Google Scholar 

  45. E. Kwon and S. Cho, Particle Behavior in Supersonic Flow during the Cold Spray Process, Matals Mater. Int., 2005, 11, p 377-381

    Article  Google Scholar 

  46. S. Yin, X.F. Wang, and W.Y. Li, Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying, Surf. Coat. Technol., 2011, 205, p 2970-2977

    Article  Google Scholar 

  47. X.K. Suo, T.K. Liu, W.Y. Li, Q.L. Suo, M.P. Planche, and H.L. Liao, Numerical Study on the Effect of Nozzle Dimension on Particle Distribution in Cold Spraying, Surf. Coat. Technol., 2013, 220, p 107-111

    Article  Google Scholar 

  48. S. Yin, X.F. Wang, W.Y. Li, and X.P. Guo, Examination on Substrate Preheating Process in Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2011, 20, p 852-859

    Article  Google Scholar 

  49. W.Y. Li, S. Yin, X. Guo, H. Liao, X.F. Wang, and C. Coddet, An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods, J. Therm. Spray Technol., 2012, 21, p 41-48

    Article  Google Scholar 

  50. S. Yin, X. Wang, W. Li, and Y. Li, Numerical Study on the Effect of Substrate Size on the Supersonic Jet Flow and Temperature Distribution Within the Substrate in Cold Spraying, J. Therm. Spray Technol., 2012, 21, p 628-635

    Article  Google Scholar 

  51. A.S. Alhulaifi, G.A. Buck, and W.J. Arbegast, Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating, J. Therm. Spray Technol., 2012, 21, p 852-862

    Article  Google Scholar 

  52. A.S. Alhulaifi and G.A. Buck, A Simplified Approach for the Determination of Critical Velocity for Cold Spray Processes, J. Therm. Spray Technol., 2014, 23, p 1259-1269

    Article  Google Scholar 

  53. W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li et al., Effect of Standoff Distance on Coating Deposition Characteristics in Cold Spraying, Mater. Des., 2008, 29, p 297-304

    Article  Google Scholar 

  54. X. Wang, S. Yin, and B.P. Xu, Effect of Cold Spray Particle Conditions and Optimal Standoff Distance on Impact Velocity, J. Dalian Univ. Technol., 2011, 51, p 498-504

    Google Scholar 

  55. C.J.L.W.Y. Li, Optimization of Spray Conditions in Cold Spraying Based on the Numerical Analysis of Particle Velocity, Trans. Nonferr. Met. Soc. China., 2004, 14, p 43-48

    Google Scholar 

  56. H.B. Jung, J.I. Park, S.H. Park, H.J. Kim, C.H. Lee, and J.W. Han, Effect of the Expansion Ratio and Length Ratio on a Gas-Particle Flow in a Converging-Diverging Cold Spray Nozzle, Met. Mater. Int., 2009, 15, p 967-970

    Article  Google Scholar 

  57. X. Wang, B. Zhang, J. Lv, and S. Yin, Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle, J. Therm. Spray Technol., 2015, 24, p 696-701

    Article  Google Scholar 

  58. W. Tang, J. Liu, Q. Chen, X. Zhang, and Z. Chen, The Effects of Two Gas Flow Streams with Initial Temperature and Pressure Differences in Cold Spraying Nozzle, Surf. Coat. Technol., 2014, 240, p 86-95

    Article  Google Scholar 

  59. T.C. Jen, L. Li, W. Cui, Q. Chen, and X. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transf., 2005, 48, p 4384-4396

    Article  Google Scholar 

  60. M. Meyer and R. Lupoi, An Analysis of the Particulate Flow in Cold Spray Nozzles, Mech. Sci., 2015, 6, p 127-136

    Article  Google Scholar 

  61. X.J. Ning, Q.S. Wang, Z. Ma, and H.J. Kim, Numerical Study of In-flight Particle Parameters in Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19, p 1211-1217

    Article  Google Scholar 

  62. S. Yin, Q. Liu, H. Liao, and X. Wang, Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray, Comput. Mater. Sci., 2014, 90, p 7-15

    Article  Google Scholar 

  63. J.J. Park, M.W. Lee, S.S. Yoon, H.Y. Kim, S.C. James, S.D. Heister, S. Chandra, W.H. Yoon, D.S. Park, and J. Ryu, Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location Upon Flow Characteristics, J. Therm. Spray Technol., 2011, 20, p 514-522

    Article  Google Scholar 

  64. S. Yin, X. Suo, H. Liao, Z. Guo, and X. Wang, Significant Influence of Carrier Gas Temperature During the Cold Spray Process, Surf. Eng., 2014, 30, p 443-450

    Article  Google Scholar 

  65. X. Suo, S. Yin, M.P. Planche, T. Liu, and H. Liao, Strong Effect of Carrier Gas Species on Particle Velocity During Cold Spray Processes, Surf. Coat. Technol., 2014, 268, p 90-93

    Article  Google Scholar 

  66. T.C. Jen, L. Pan, L. Li, Q. Chen, and W. Cui, The Acceleration of Charged Nano-Particles in Gas Stream of Supersonic De-Lavel-Type Nozzle Coupled with Static Electric Field, Appl. Therm. Eng., 2007, 27, p 2877-2885

    Article  Google Scholar 

  67. G. Huang, D. Gu, X. Li, and L. Xing, Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying, Mater. Sci., 2014, 20, p 271-276

    Google Scholar 

  68. R. Huang and H. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2012, 21, p 541-549

    Article  Google Scholar 

  69. R. Lupoi and W. O’Neill, Powder Stream Characteristics in Cold Spray Nozzles, Surf. Coat. Technol., 2011, 206, p 1069-1076

    Article  Google Scholar 

  70. D.M. Chun, J.O. Choi, C.S. Lee, and S.H. Ahn, Effect of Stand-Off Distance for Cold Gas Spraying of Fine Ceramic Particles (<5 μm) Under Low Vacuum and Room Temperature Using Nano-Particle Deposition System (NPDS), Surf. Coat. Technol., 2012, 206, p 2125-2132

    Article  Google Scholar 

  71. A. Sova, A. Okunkova, S. Grigoriev, and I. Smurov, Velocity of the Particles Accelerated by a Cold Spray Micronozzle: Experimental Measurements and Numerical Simulation, J. Therm. Spray Technol., 2013, 22, p 75-80

    Article  Google Scholar 

  72. M. Karimi, G. Rankin, and A. Fartaj, Parametric Study of Exhaust Pattern in Cold Spray Using CFD and Particle-Wall Impact Analysis, J. Appl. Fluid Mech., 2014, 7, p 75-87

    Google Scholar 

  73. B. Samareh and A. Dolatabadi, Dense Particulate Flow in a Cold Gas Dynamic Spray System, J. Fluids Eng., 2008, 130, p 081702

    Article  Google Scholar 

  74. H. Takana, K. Ogawa, T. Shoji, and H. Nishiyama, Computational Simulation of Cold Spray Process Assisted by Electrostatic Force, Powder Technol., 2008, 185, p 116-123

    Article  Google Scholar 

  75. S. Li, B. Muddle, M. Jahedi, and J. Soria, A Numerical Investigation of the Cold Spray Process Using Underexpanded and overexpanded Jets, J. Therm. Spray Technol., 2012, 21, p 108-120

    Article  Google Scholar 

  76. V.I. Zapryagaev, A.N. Kudryavtsev, A.V. Lokotko, A.V. Solotchin, A.A. Pavlov, and A. Hadjadj, An Experimental and Numerical Study of a Supersonic-Jet Shock-Wave Structure, Proceedings of the XI International Conference on the Methods of Aerophysical Research, 2002, Russia, p 187-191

  77. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55, p 193-208

    Article  Google Scholar 

  78. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978

    Google Scholar 

  79. A. Haider and O. Levenspiel, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Power Technol., 1989, 58, p 63-70

    Article  Google Scholar 

  80. C.T. Crowe, Drag Coefficient of Particles in a Rocket Nozzle, AIAA J., 1967, 5, p 1021-1022

    Article  Google Scholar 

  81. C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14, p 707-708

    Article  Google Scholar 

  82. K.W. Thompson, Time-Dependent Boundary Conditions for Hyperbolic Systems II, J. Comput. Phys., 1990, 89, p 439-461

    Article  Google Scholar 

  83. A. Fluent, User’ Guide, USA, 2014.

  84. C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd ed., CRC Press, Boca Raton, 1998

    Google Scholar 

  85. L. Schiller and N. Naumann, A Drag Coefficient Correlation, VDI, Zeits, 1933, 77, p 318-320

    Google Scholar 

  86. S. Yin, Y. Sun, X. Wang, Z. Guo, and H. Liao, Effect of Spray Angle on Temperature Distribution Within the Metallic Substrate in Cold Spraying, J. Therm. Spray Technol., 2013, 22, p 983-991

    Article  Google Scholar 

  87. H. Katanoda, Numerical Simulation of Temperature Uniformity within Solid Particles in Cold Spray, J. Solid Mech. Mater. Eng., 2008, 2, p 58-69

    Article  Google Scholar 

  88. M.P. Dewar, A.G. McDonald, and A.P. Gerlich, Interfacial Heating During Low-Pressure Cold-Gas Dynamic Spraying of Aluminum Coatings, J. Mater. Sci., 2012, 47, p 184-198

    Article  Google Scholar 

  89. W.E. Ranz and W.R.M. Jr., Evaporation from Drops Part I, Chem. Eng. Prog., 1952, 48, p 141-146

    Google Scholar 

  90. G.A. Hughmark, Mass and Heat Transfer from Rigid Sphere, AlChE J., 1967, 13, p 1219-1221

    Article  Google Scholar 

  91. D.J. Carlson and P.L. Chambre, Particle Drag and Heat Transfer in Rocket Nozzles, AIAA J., 1964, 2, p 1980-1984

    Article  Google Scholar 

  92. Y.P. Wan, V. Prasad, G.-X. Wang, S. Sampath, and J.R. Fincke, Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes, J. Heat Transf., 1999, 121, p 691-699

    Article  Google Scholar 

  93. M.W. Lee, J.J. Park, D.Y. Kim, S.S. Yoon, H.Y. Kim, D.H. Kim, S.C. James, S.C. Chandra, S. Coyle, J.H. Ryu, W.H. Yoon, and D.S. Park, Optimization of Supersonic Nozzle Flow for Titanium Dioxide Thin-Film Coating by Aerosol Deposition, J. Aerosol Sci., 2011, 42, p 771-780

    Article  Google Scholar 

  94. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232

    Article  Google Scholar 

  95. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klessen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808

    Article  Google Scholar 

  96. T. Schmidt, F. Gaertner, and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Technol., 2006, 15, p 488-494

    Article  Google Scholar 

  97. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8, p 576-582

    Article  Google Scholar 

  98. R. Nickel, K. Bobzin, E. Lugscheider, D. Parkot, W. Varava, H. Olivier, and X. Luo, Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2007, 16, p 729-735

    Article  Google Scholar 

  99. S. Yin, X. Suo, Z. Guo, H. Liao, and X. Wang, Deposition Features of Cold Sprayed Copper Particles on Preheated Substrate, Surf. Coat. Technol., 2015, 268, p 252-256

    Article  Google Scholar 

  100. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Suglmoto, and M. Lzawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16, p 643-650

    Article  Google Scholar 

  101. S. Yin, X. Suo, Y. Xie, W. Li, R. Lupoi, and H. Liao, Effect of Substrate Temperature on Interfacial Bonding for Cold Spray of Ni onto Cu, J. Mater. Sci., 2015, 50, p 7448-7457

    Article  Google Scholar 

  102. A.N. Ryabinin, E. Irissou, A. McDonald, and J.G. Legoux, Simulation of Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, Int. J. Therm. Sci., 2012, 56, p 12-18

    Article  Google Scholar 

  103. S.V. Klinkov, V.F. Kosarev, and V.N. Zaikovskii, Influence of Flow Swirling and Exit Shape of Barrel Nozzle on Cold Spraying, J. Therm. Spray Technol., 2011, 20, p 837-844

    Article  Google Scholar 

  104. W. Wong, E. Irissou, A.N. Ryabinin, J.G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20, p 213-226

    Article  Google Scholar 

  105. H. Katanoda, T. Matsuoka, and K. Matsuo, Experimental Study on Shock Wave Structures in Constant-Area Passage of Cold Spray Nozzle, J. Therm. Sci., 2007, 16, p 40-45

    Article  Google Scholar 

  106. M.F. Smith, T.J. O’Hern, J.E. Brockmann, R.A. Neiser, T.J. Roemer, A Comparison of Two Laser-Based Diagnostics for Analysis of Particles in Thermal Spray Streams, Advanced Thermal Spray Science Technology, ASM International, USA, 1995, p 105-110

  107. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18, p 110-117

    Article  Google Scholar 

  108. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium Via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209, p 922-929

    Article  Google Scholar 

  109. A. List, F. Gärtner, T. Schmidt, and T. Klassen, Impact Conditions for Cold Spraying of Hard Metallic Glasses, J. Therm. Spray Technol., 2012, 21, p 531-540

    Article  Google Scholar 

  110. V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14, p 330-334

    Article  Google Scholar 

  111. H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol., 2006, 201, p 1935-1941

    Article  Google Scholar 

  112. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16, p 619-626

    Article  Google Scholar 

  113. L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 2006, 15, p 495-500

    Article  Google Scholar 

  114. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3422-3429

    Article  Google Scholar 

  115. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252, p 1368-1377

    Article  Google Scholar 

  116. A.G. McDonald, A.N. Ryabinin, E. Irissou, and J.G. Legoux, Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, J. Therm. Spray Technol., 2013, 22, p 391-397

    Article  Google Scholar 

  117. S. Yin, X.F. Wang, X.K. Suo, H.L. Liao, Z.W. Guo, W.Y. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61, p 5105-5118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Meyer, M., Li, W. et al. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review. J Therm Spray Tech 25, 874–896 (2016). https://doi.org/10.1007/s11666-016-0406-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0406-8

Keywords

Navigation