Skip to main content
Log in

A Generalized Critical Velocity Window Based on Material Property for Cold Spraying by Eulerian Method

  • Technical Note
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, the previously developed Eulerian model (Yu et al., J Therm Spray Technol 21(3):745-752, 2012), which could well predict the critical velocity and erosion velocity, was extended to other commonly used materials such as aluminum, iron, nickel, stainless steel 316, and Inconel718 for studying the influence of material property and establishing a generalized window of critical velocity. Results show that the deformation behavior of the used materials could be classified as coordinated deformation (copper, iron, nickel) and uncoordinated deformation patterns (aluminum, stainless steel, and Inconel718). However, it was found that the steady maximum equivalent plastic strain values at the critical velocity for each material concentrate in the extent of 2.6-3.0 regardless of deformation pattern. Dimensionless analysis shows that, the calculated critical velocity increases with the increase of material characteristic velocity, and this relationship can be primarily used to predict the critical velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Yu, W.Y. Li, F. Wang, and H. Liao, Finite Element Simulation of Impacting Behavior of Particles in Cold Spraying by Eulerian Approach, J. Therm. Spray Technol., 2012, 21(3), p 745-752

    Article  Google Scholar 

  2. A. Segall, A. Papyrin, J. Conway, Jr., and D. Shapiro, A Cold-Gas Spray Coating Process for Enhancing Titanium, JOM, 1998, 50(9), p 52-54

    Article  Google Scholar 

  3. H. Fukanuma, N. Ohno, B. Sun, and R.Z. Huang, In-Flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat Technol., 2006, 201(5), p 1935-1941

    Article  Google Scholar 

  4. C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi, and S.P. Ringer, Investigating the Microstructure and Composition of Cold Gas-Dynamic Spray (CGDS) Ti Powder Deposited on Al6063 Substrate, Surf. Coat Technol., 2010, 204(23), p 3739-3749

    Article  Google Scholar 

  5. A. Papyrin, Cold Spray Technology, Adv. Mater. Process, 2001, 159(9), p 49-51

    Google Scholar 

  6. Y.W. Li, C. Zhang, T.H. Wang, P.X. Guo, L.H.J.C. Liao, and C. Coddet, Significant Influences of Metal Reactivity and Oxide Films at Particle Surfaces on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 253(7), p 3557-3562

    Article  Google Scholar 

  7. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  8. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  9. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  10. Y.M. Xiong, K. Kang, G. Bae, S.H. Yoon, and C.H. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92(19), p 194101-194103

    Article  Google Scholar 

  11. S. Yin, X.F. Wang, B.P. Xu, and W.Y. Li, Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying, J. Therm. Spray Technol., 2010, 19(5), p 1032-1041

    Article  Google Scholar 

  12. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, 1982

    Google Scholar 

  13. C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2004, 96(8), p 4288-4292

    Article  Google Scholar 

  14. H. Koivuluoto, M. Honkanen, and P. Vuoristo, Cold-Sprayed Copper and Tantalum Coatings: Detailed FESEM and TEM Analysis, Surf. Coat. Technol., 2010, 204(15), p 2353-2361

    Article  Google Scholar 

  15. W.Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892

    Article  Google Scholar 

  16. J.M. Pereira and B.A. Lerch, Effects of Heat Treatment on the Ballistic Impact Properties of Inconel718 for Jet Engine Fan Containment Applications, Int. J. Impact Eng., 2001, 25(8), p 715-733

    Article  Google Scholar 

  17. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  18. E.S. Hertel, Jr., R.L. Bell, M.G. Elrick, A.V. Farnsworth, G.I. Kerley, J.M. McGlaun, S.V. Petney, S.A. Silling, P.A. Taylor, and L. Yarrington, CTH: A Software Family for Multi-dimensional Shock Physics Analysis, Springer, Berlin, 1992

    Google Scholar 

  19. D.J. Steinberg, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory, 1996

  20. N. Tounsi, J. Vincenti, A. Otho, and M.A. Elbestawi, From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation, Int. J. Mach. Tools Manuf., 2002, 42(12), p 1373-1383

    Article  Google Scholar 

  21. Abaqus Analysis User’s Manual, ABAQUS 6.8 HTML Documentation, Dassault Systèmes, 2008

  22. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994

    Book  Google Scholar 

  23. L.L. Wang, Advances in Impact Dynamics, China Science and Technology University Press, Beijing, 1992

    Google Scholar 

  24. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, H. Hallen, and G. Pache, Kinetic Power Compaction Applying the Cold Spray Process Parameters. Thermal Spray 2001: New Surfaces for A New Millennium. C.C. Berndt, K.A. Khor, and E. Lugscheider, Eds, ASM International, Materials Park, OH, 2001, p 417-422

Download references

Acknowledgements

The authors would like to thank for financial support from financial support from the National Natural Science Foundation of China (51005180), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131052). The author Min YU would like to thank for financial support from the program of Marie-Curie and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.Y., Yu, M., Wang, F.F. et al. A Generalized Critical Velocity Window Based on Material Property for Cold Spraying by Eulerian Method. J Therm Spray Tech 23, 557–566 (2014). https://doi.org/10.1007/s11666-013-0023-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0023-8

Keywords

Navigation