Skip to main content
Log in

Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Mechanical and thermal properties of thermal sprayed coatings, especially ceramics, are strongly influenced by cracks and pores that are present in the coating microstructure. In the recent past, there have been efforts to find an analytical model describing the coating properties based on the microstructural characteristics. Various analytical models were developed and published in the literature. In this study, several major models were applied to ceramic and metal coatings to describe their elastic modulus and thermal conductivity. The sensitivity of the models to the variations in the microstructure and relevancy of their use in specific cases were examined. The results were compared with those obtained by FEM modeling and experimentally measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Kroupa, Nonlinear Behavior in Compression and Tension of Thermally Sprayed Ceramic Coatings, J. Therm. Spray Technol., 2007, 16(1), p 84-95

    Article  CAS  Google Scholar 

  2. I. Sevostianov and M. Kachanov, Elastic and Conductive Properties of Plasma-Sprayed Ceramic Coatings in Relation to Their Microstructure: An Overview, J. Therm. Spray Technol., 2009, 18(5-6), p 822-834

    Article  CAS  Google Scholar 

  3. J.R. Bristow, Microcracks and the Static and Dynamic Elastic Constants of Annealed and Heavily Cold-Worked Metals, Br. J. Appl. Phys., 1960, 11(2), p 81-85

    Article  CAS  Google Scholar 

  4. B. Budiansky and R.J. Oconnell, Elastic-Moduli of a Cracked Solid, Int. J. Solids Struct., 1976, 2(2), p 81-97

    Article  Google Scholar 

  5. F.S. Henyey and N. Pomphrey, Self-Consistent Elastic Moduli of a Cracked Solid, Geophys. Res. Lett., 1982, 9(8), p 903-906

    Article  Google Scholar 

  6. M. Kachanov, Effective Elastic properties of Cracked Solids, Appl. Mech. Rev., 1992, 45(8), p 305-336

    Article  Google Scholar 

  7. F. Kroupa, Effect of Nets of Microcracks on Elastic Properties of Materials, Kovove Mater., 1995, 33(6), p 418-426 (in Czech)

    Google Scholar 

  8. F. Cernuschi, S. Ahmaniemi, P. Vuoristo, and T. Mantyla, Modelling of Thermal Conductivity of Porous Materials: Application to Thick Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(9), p 2657-2667

    Article  CAS  Google Scholar 

  9. S.H. Leigh and C.C. Berndt, Modelling of Elastic Constants of Plasma Spray Deposits with Ellipsoid-Shaped Voids, Acta Mater., 1999, 47(5), p 1575-1586

    Article  CAS  Google Scholar 

  10. I. Sevostianov, M. Kachanov, J.P. Ruud, P. Lorraine, and M. Dubois, Quantitative Characterization of Microstructures of Plasma-Sprayed Coatings and Their Conductive and Elastic Properties, Mater. Sci. Eng. A, 2004, 386(1-2), p 164-174

    Google Scholar 

  11. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  CAS  Google Scholar 

  12. R. Musalek, O. Kovarik, and J. Matejicek, Prediction of Mechanical Properties of Thermally Sprayed Coatings Using Finite Element Method, Proceedings of Vrstvy a povlaky, 2008, p 117-122

  13. http://www.ctcms.nist.gov/oof/oof2/. Accessed 10 Oct 2011

  14. http://nanohub.org/resources/oof2. Accessed 10 Oct 2011

  15. R. McPherson, A Model for the Thermal-Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112(1), p 89-95

    Article  CAS  Google Scholar 

  16. I.O. Golosnoy, S.A. Tsipas, and T.W. Clyne, An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2005, 14(2), p 205-214

    Article  CAS  Google Scholar 

  17. S. Boire-Lavigne, C. Moreau, and R.G. Saintjacques, The Relationship between the Microstructure and Thermal-Diffusivity of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 1995, 3, p 261-267

    Article  Google Scholar 

  18. P. Chraska, J. Dubsky, K. Neufuss, and J. Pisacka, Alumina-Base Plasma-Sprayed Materials part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320-326

    Article  CAS  Google Scholar 

  19. R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1-2), p 422-428

    Article  CAS  Google Scholar 

  20. ImageJ software, http://rsbweb.nih.gov/ij/. Accessed 10 Oct 2011

  21. Temperature Dependent Elastic & Thermal Properties Database, MPDB v.6.60, JAHM Software, Inc., North Reading, 1999

  22. M.R. Gallas and G.J. Piermarini, Bulk Modulus and Youngs Modulus of Nanocrystalline Gamma-Alumina, J. Am. Ceram. Soc., 1994, 77(11), p 2917-2920

    Article  CAS  Google Scholar 

  23. C.J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32(4), p 997-1004

    Article  CAS  Google Scholar 

  24. A. Kulkarni, S. Sampath, A. Goland, H. Herman, and B. Dowd, Computed Microtomography Studies to Characterize Microstructure-Property Correlations in Thermal Sprayed Alumina Deposits, Scr. Mater., 2000, 43(5), p 471-476

    Article  CAS  Google Scholar 

  25. P. Ctibor, R. Lechnerová, and V. Beneš, Quantitative Analysis of Pores of Two Types in a Plasma-Sprayed Coating, Mater. Charact., 2006, 56(4-5), p 297-304

    Article  CAS  Google Scholar 

  26. J. Matějíček, S. Sampath, and H. Herman, Processing Effects on Splat Formation, Microstructure and Quenching Stress in Plasma Sprayed Coatings, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., 25-29 May 1998 (Nice), ASM International, 1998, p 419-424

  27. S. Sampath, X.Y. Jiang, J. Matějíček, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272(1), p 181-188

    Article  Google Scholar 

  28. P. Bengtsson, T. Ericsson, and J. Wigren, Thermal Shock Testing of Burner Cans Coated with a Thick Thermal Barrier Coating, J. Therm. Spray Technol., 1998, 7(3), p 340-348

    Article  CAS  Google Scholar 

  29. H.B. Guo, R. Vassen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186(3), p 353-363

    Article  CAS  Google Scholar 

  30. M. Kachanov and I. Sevostianov, On Quantitative Characterization of Microstructures and Effective Properties, Int. J. Solids Struct., 2005, 42(2), p 309-336

    Article  Google Scholar 

Download references

Acknowledgements

Financial support through grant no. ME901 (Czech Ministry of Education, Youth and Sports), as well as the help of Ing. Ondřej Kovářík, Ph.D. (Department of Materials at FNSPE, CTU in Prague) are gratefully acknowledged. Authors would like to thank to their colleagues from CTSR (Stony Brook University, USA) for their help and providing GSP samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Vilémová.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilémová, M., Matějíček, J., Mušálek, R. et al. Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings. J Therm Spray Tech 21, 372–382 (2012). https://doi.org/10.1007/s11666-012-9739-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9739-0

Keywords

Navigation