Skip to main content
Log in

Numerical Study on the Effect of Substrate Size on the Supersonic Jet Flow and Temperature Distribution Within the Substrate in Cold Spraying

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study investigates the effect of substrate size on the supersonic jet flow regime, particle acceleration and temperature distribution within the substrate in cold spraying. A computational fluid dynamics approach is employed in the present work to achieve this objective. The simulated results show that substrate diameter has some effect on the gas flow regime and the consequent particle motion. When the substrate diameter is smaller than the nozzle exit diameter, the thickness of the bow shock formed in front of the substrate is rather small, which contributes to increase the particle impact velocity. With increasing the substrate diameter, the bow shock thickness increases gradually up to the point at which the substrate diameter is beyond the nozzle exit diameter. A further increase beyond this has almost no effect on the flow regime and the bow shock thickness. Besides, the current numerical work also reveals that the temperature distribution within the substrate can be significantly influenced by substrate thickness. With an increase in substrate thickness, the substrate temperature presents a downward trend, which means that higher inlet temperature may be required for thick substrate to achieve the same preheating effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Tabbara and S. Gu, Computational Simulation of Liquid-Fuelled HVOF Thermal Spraying, Surf. Coat. Technol., 2009, 204(5), p 676-684

    Article  CAS  Google Scholar 

  2. H. Tabbara, S. Gu, and D.G. McCartney, Computational Modelling of Titanium Particles in Warm Spray, Comput. Fluids, 2011, 44(1), p 358-368

    Article  CAS  Google Scholar 

  3. A.N. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    CAS  Google Scholar 

  4. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  5. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  CAS  Google Scholar 

  6. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  CAS  Google Scholar 

  7. S. Yin, X.F. Wang, W.Y. Li, and B.P. Xu, Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying, J. Therm. Spray Technol., 2009, 18(4), p 686-693

    Article  CAS  Google Scholar 

  8. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  CAS  Google Scholar 

  9. W.Y. Li, S. Yin, and X.F. Wang, Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method, Appl. Surf. Sci., 2010, 256(12), p 3725-3734

    Article  CAS  Google Scholar 

  10. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  CAS  Google Scholar 

  11. W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396

    Article  CAS  Google Scholar 

  12. W.Y. Li, H. Liao, H.T. Wang, C.J. Li, G. Zhang, and C. Coddet, Optimal Design of Convergent-Barrel Cold Spray Nozzle by Numerical Method, Appl. Surf. Sci., 2006, 253(2), p 708-713

    Article  CAS  Google Scholar 

  13. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price, and P.H. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(3), p 608-620

    Article  Google Scholar 

  14. S. Yin, X.F. Wang, and W.Y. Li, Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying, Surf. Coat. Technol., 2011, 205(8-9), p 2970-2977

    Article  CAS  Google Scholar 

  15. T.C. Jen, L.J. Li, W.-Z. Cui, Q.H. Chen, and X.M. Zhang, Numerical Investigations on Cold Gas Dynamic Spray Process with Nano- and Microsize Particles, Int. J. Heat Mass Transf., 2005, 48(21-22), p 4384-4396

    Article  CAS  Google Scholar 

  16. S. Yin, X.F. Wang, W.Y. Li, and B.P. Xu, Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD, J. Therm. Spray Technol., 2010, 19(6), p 1155-1162

    Article  Google Scholar 

  17. J. Pattison, S. Celotto, A. Dhan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202(8), p 1443-1454

    Article  CAS  Google Scholar 

  18. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 643-650

    Article  CAS  Google Scholar 

  19. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634

    Article  CAS  Google Scholar 

  20. J.G. Legoux, E. Irissou, and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    Article  CAS  Google Scholar 

  21. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: The Role of Substrate Characteristics in Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116

    Article  Google Scholar 

  22. S. Yin, X.F. Wang, W.Y. Li, and H.E. Jie, Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying, Surf. Coat. Technol., 2011, 57(11), p 7560-7565

    Google Scholar 

  23. P.H. Gao, C.J. Li, G.J. Yang, Y.G. Li, and C.X. Li, Influence of Substrate Hardness Transition on Built-Up of Nanostructured WC-12Co by Cold Spraying, Appl. Surf. Sci., 2010, 256(7), p 2263-2268

    Article  CAS  Google Scholar 

  24. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2003, 12(2), p 265-281

    Article  Google Scholar 

  25. S. Yin, X.F. Wang, W.Y. Li, and X.P. Guo, Examination on Substrate Pre-heating Process in Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2011, 20(4), p 852-859

    Article  Google Scholar 

  26. W.Y. Li, S. Yin, X.P. Guo, H.L. Liao, X.F. Wang, and C. Coddet, An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods, J. Therm. Spray Technol. (in press). doi:10.1007/s11666-011-9685-2

  27. FLUENT Inc., Fluent 6.2 User Guide, 1999

  28. R. Nickel, K. Bobzin, E. Lugscheider, D. Parkot, W. Varava, H. Olivier, and X. Luo, Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 729-735

    Article  Google Scholar 

  29. T. Han, B.A. Gillispie, and Z.B. Zhao, An Investigation on Powder Injection in the High-Pressure Cold Spray Process, J. Therm. Spray Technol., 2009, 18(3), p 320-330

    Article  Google Scholar 

  30. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55(2), p 193-208

    Article  Google Scholar 

  31. J. Lee and S.J. Lee, The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement, Int. J. Heat Mass Transf., 2000, 43(4), p 555-575

    Article  Google Scholar 

Download references

Acknowledgments

The research was mainly supported by the National Natural Science Foundation of China (No. 50476075). The authors also would like to acknowledge the financial support by the Chinese Ministry of Education’s Academic Award for Outstanding Doctoral Student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Wang, Xf., Li, Wy. et al. Numerical Study on the Effect of Substrate Size on the Supersonic Jet Flow and Temperature Distribution Within the Substrate in Cold Spraying. J Therm Spray Tech 21, 628–635 (2012). https://doi.org/10.1007/s11666-011-9711-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9711-4

Keywords

Navigation