Skip to main content
Log in

Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, high velocity oxy-fuel (HVOF) and vacuum plasma spraying (VPS) coatings were sprayed using a Praxair (CO-210-24) CoNiCrAlY powder. Free-standing coatings underwent vacuum annealing at different temperatures for times of up to 840 h. Feedstock powder, and as-sprayed and annealed coatings, were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The hardness and Young’s modulus of the as-sprayed and the annealed HVOF and VPS coatings were measured, including the determination of Young’s moduli of the individual phases via nanoindentation and measurements of Young’s moduli of coatings at temperatures up to 500 °C. The Eshelby inclusion model was employed to investigate the effect of microstructure on the coatings’ mechanical properties. The sensitivity of the mechanical properties to microstructural details was confirmed. Young’s modulus was constant up to ~200 °C, and then decreased with increasing measurement temperature. The annealing process increased Young’s modulus because of a combination of decreased porosity and β volume fraction. Oxide stringers in the HVOF coating maintained its higher hardness than the VPS coating, even after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Zhang, S.J. Harris, and D.G. McCartney, Mechanical Properties and Microstructure of HVOF Sprayed Co and Ni Alloy Coatings, Thermal Spray 2003: Advancing the Science & Applying the Technology, 2003, p 829-836

  2. L. Zhao, M. Parco, and E. Lugscheider, High Velocity Oxy-Fuel Thermal Spraying of a NiCoCrAlY Alloy, Surf. Coat. Technol., 2004, 179, p 272-278

    Article  CAS  Google Scholar 

  3. K. Fritscher and Y. Lee, Investigation of an As-Sprayed NiCoCrAlY Overlay Coating—Microstructure and Evolution of the Coating, Mater. Corros., 2005, 56, p 5-14

    Article  CAS  Google Scholar 

  4. M. Shibata, S. Kuroda, M. Watanabe, and Y. Sakamoto, Oxidation Property of CoNiCrAlY Coatings Prepared by Various Thermal Spraying Techniques, Mater. Sci. Forum, 2006, 522-523, p 339-344

    Article  CAS  Google Scholar 

  5. V. Higuera, F.J. Belzunce, and J. Riba, Influence of the Thermal-Spray Procedure on the Properties of a CoNiCrAlY Coating, Surf. Coat. Technol., 2006, 200, p 5550-5556

    Article  CAS  Google Scholar 

  6. M.J. Pomeroy, Coatings for Gas Turbine Materials and Long Term Stability Issues, Mater. Des., 2005, 26, p 223-231

    Article  CAS  Google Scholar 

  7. H.E. Evans and M.P. Taylor, Delamination Processes in Thermal Barrier Coating Systems, J. Corros. Sci. Eng., 2003, 6, [Paper H 011]

  8. M. Shibata, S. Kuroda, H. Murakami, M. Ode, M. Watanabe, and Y. Sakamoto, Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Bond Coatings Prepared by Different Thermal Spray Processes, 1st Asian Thermal Spray Conference (ATSC 2005), Nagoya, Japan, 2005

  9. A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, and G. Rizzi, A Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy, J. Therm. Spray Tech., 2003, 12, p 504-507

    Article  CAS  Google Scholar 

  10. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY-type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44, p 1687-1703

    Article  CAS  Google Scholar 

  11. Y. Itoh, M. Saitoh, and Y. Ishiwata, Characteristics of MCrAlY Coatings Sprayed by High Velocity Oxygen-Fuel Spraying System, J. Eng. Gas Turbines Power, 2000, 122, p 43-49

    Article  CAS  Google Scholar 

  12. S. Saeidi, K.T. Voisey, and D.G. McCartney, The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, J. Therm. Spray Tech., 2009, 182, p 209-216

    Article  Google Scholar 

  13. H. Waki, T. Kitamura, and A. Kobayashi, Effect of Thermal Treatment on High-Temperature Mechanical Properties Enhancement in LPPS, HVOF, and APS CoNiCrAlY Coatings, J. Therm. Spray Tech., 2009, 18, p 500-509

    Article  CAS  Google Scholar 

  14. F. Azarmi, T. Coyle, and J. Mostaghimi, Young’s Modulus Measurement and the Study of the Relationship Between Mechanical Properties and Microstructure of Air Plasma Sprayed Alloy 625, Surf. Coat. Technol., 2008. doi:10.1016/j.surfcoat.2008.09.035

  15. C.J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004

    Article  CAS  Google Scholar 

  16. M. Beghini, G. Benamati, L. Bertini, and F. Frendo, Measurement of Coatings’ Elastic Properties by Mechanical Methods. Part 2. Application to Thermal Barrier Coatings, Exp. Mech., 2001, 41, p 305-311

    Article  Google Scholar 

  17. Y. Itoh and M. Saitoh, Mechanical Properties of Overaluminized MCrAlY Coatings at Room Temperature, J. Eng. Gas Turbines Power, 2005, 127, p 807-813

    Article  CAS  Google Scholar 

  18. A. Rico, J. Gómez-García, C.J. Múnez, P. Poza, and V. Utrilla, Mechanical Properties of Thermal Barrier Coatings After Isothermal Oxidation: Depth Sensing Indentation Analysis, Surf. Coat. Technol., 2009, 203, p 2307-2314

    Article  CAS  Google Scholar 

  19. M. Beghini, L. Bertini, and F. Frendo, Measurement of Coatings’ Elastic Properties by Mechanical Methods. Part 1. Consideration on Experimental Errors, Exp. Mech., 2001, 41, p 293-304

    Article  Google Scholar 

  20. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993

    Book  Google Scholar 

  21. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. A Math. Phys. Sci., 1957, 241, p 376-396

    Article  Google Scholar 

  22. J.D. Eshelby, The Elastic Field Outside an Ellipsoidal Inclusion, Proc. R. Soc. Lond. A Math. Phys. Sci., 1959, 252, p 561-569

    Article  Google Scholar 

  23. J.A. Thompson, Y.C. Tsui, R.C. Reed, D.S. Rickerby, and T.W. Clyne, Creep of Plasma Sprayed CoNiCrAlY and NiCrAlY Bond Coats and Its Effects on Residual Stresses During Thermal Cycling of Thermal Barrier Coating Systems High Temperature Surface Engineering, 6th International Conference on Engineering the Surface, 2000, p 199-212

  24. D. Hull and T.W. Clyne, An Introduction to Composite Materials, CUP, Cambridge, 1996

    Google Scholar 

  25. P. Poza and P.S. Grant, Microstructure Evolution of Vacuum Plasma Sprayed CoNiCrAlY Coatings After Heat Treatment and Isothermal Oxidation, Surf. Coat. Technol., 2006, 201, p 2887-2896

    Article  CAS  Google Scholar 

  26. D. Toma, W. Brandl, and U. Köster, Studies on the Transient Stage of Oxidation of VPS and HVOF Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1999, 120-121, p 8-15

    Article  CAS  Google Scholar 

  27. W. Brandl, D. Toma, J. Kruger, H.J. Grabke, and G. Matthaus, The Oxidation Behaviour of HVOF Thermal-Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1997, 94-95, p 21-26

    Article  Google Scholar 

  28. J. Toscano, A. Gil, T. Huttel, E. Wessel, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Temperature Dependence of Phase Relationships in Different Types of MCrAlY-Coatings, Surf. Coat. Technol., 2007, 202, p 603-607

    Article  CAS  Google Scholar 

  29. P. Krukovskya, K. Tadlyaa, A. Rybnikovb, I. Kryukovb, N. Mojaiskaiab, V. Kolarikc, and M. Juez-Lorenzoc, Lifetime Modelling for MCrAlY Coatings in Industrial Gas Turbine Blades, Mater. Res., 2002, 7, p 43-47

    Google Scholar 

  30. D.R.G. Achar, R. Munoz-Arroyo, L. Singheiser, and W.J. Quadakkers, Modelling of Phase Distributions in MCrAlY Coatings and Their Interactions with Nickel Based Alloys, J. Phys. IV Fr., 2004, 120, p 231-238

    CAS  Google Scholar 

  31. Y. Tamarin, Protective Coatings for Turbine Blades, ASM International, Materials Park, OH, 2002

    Google Scholar 

  32. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Dr. Nicola Everitt and Mike Davies—both of the Materials, Mechanics and Structures Research Division, Faculty of Engineering, The University of Nottingham—for carrying out the nanoindentation experiment. The authors thank also Prof. T.W. Clyne and Mr. K.A. Roberts of the University of Cambridge for their assistance in carrying out plasma spraying and providing the relevant experimental details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Voisey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeidi, S., Voisey, K.T. & McCartney, D.G. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. J Therm Spray Tech 20, 1231–1243 (2011). https://doi.org/10.1007/s11666-011-9666-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9666-5

Keywords

Navigation