Skip to main content
Log in

Supervision and Measuring of Particle Parameters During the Wire-Arc Spraying Process with the Diagnostic Systems Accuraspray-g3 and LDA (Laser-Doppler-Anemometry)

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Due to low cost of operation, high deposition rates and efficiency, wire arc spraying has become one of the most important thermal spray technologies, especially as a tool for coatings used to improve corrosion and wear protection. In order to obtain high-quality coatings, the flow characteristics of the atomizing gas have to be optimized. Thus, the nozzle design as well as the properties of the gas used need to be adjusted and the resulting particle parameters have to be quantified. Employing the Accuraspray-g3 system in combination with Laser Doppler Anemometry (LDA), the particle size distribution and velocity have been measured for a wide range of parameters, including different materials, different gas pressures and nozzles resulting in design suggestions and offering the possibility to compare the two different diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Nakagawa, K. Shimoda, T. Tomoda, M. Koyama, Y. Ishikawa, and T. Nakajima, Development of Mass Production Technology of Arc Spraying for Automotive Engine Aluminum Alloy Valve Lifters, Thermal Spray Research and Applications, T.F. Bernecki, Ed., May 20-25, 1990 (Long Beach, CA), ASM International, 1991, p 457-464

  2. K. Nassenstein, “Herstellen von partikelverstärkten Metallmatrix-Verbundwerkstoffen durch kombiniertes Lichtbogen- und Hochgeschwindigkeitsflammspritzen (Manufacturing of Particle Reinforced Metal-Matrix Composites Through Arc and High Velocity Oxygen Fuel Spraying),” Ph.D. Thesis, Dortmund University, 1997 (in German)

  3. H.-D. Steffens, M. Dvorak, and M. Wewel, Einfluss der Prozessparameter beim Lichtbogenspritzen - Ein Leitfaden für den Praktiker (Influence of Process Parameters on Arc Spraying—A Guideline for Practitioner), Thermische Spritzkonferenz, Aug 29-31, 1990 (Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, 1990, p 23-26 (in German)

  4. A.J. Allen, G.G. Long, H. Boukari, J. Ilavsky, A. Kulkarni, S. Sampath, H. Herman, and A.N. Goland, Microstructural Characterization Studies to Relate the Properties of Thermal Spray Coatings to Feedstock and Spray Conditions, Surf. Coat. Technnol., 2001, 146-147, p 544-552

    Article  CAS  Google Scholar 

  5. Y. Yeh and H.Z. Cummins, Localized Fluid Flow Measurements with a He-Ne-Spectrometer, Appl. Phys. Lett, 1964, 4(10), p 176-178

    Article  ADS  Google Scholar 

  6. J. Agapagis and T. Hoffmann, Real-Time Imaging for Thermal Spray Process Development and Control, J. Therm. Spray Technol., 1992, 1(1), p 19-25

    Article  ADS  Google Scholar 

  7. M.F. Smith, Laser Measurements of Particle Velocities in Vacuum Plasma Jets, Tagungsband of 1st Plasma Technik Symposium, Vol 1, H. Eschnauer, Ed., May 18-20 (Lucerne, Switzerland), 1988

  8. T.V. Streibl, T. Duda, and K.D. Landes, Diagnostics of Thermal Spray Processes by In-Flight Measurement of Particle Size and Shape with Innovative Particle-Shape-Imaging (PSI) Technique, SPIE, High Speed Imaging and Analysis III, Vol 4308, A.M. Frank, Ed., Jan 21-26 (CA), 2001, p 45-52

  9. N. Hussary, J. Schein, J. Heberlein, Control of Jet Convergence in Wire Arc Spray Systems, Tagungsband Conference Proceedings, E. Lugscheider and R. A. Kammer, Ed., March 17-19 (Düsseldorf, Germany), 1999, p 335-339

  10. A. Pourmousa, J. Mostaghimi, A. Abedini, and S. Chandra, Particle Size Distribution in a Wire-Arc Spraying System, J. Therm. Spray Technol., 2005, 14(4), p 502-510

    Article  CAS  ADS  Google Scholar 

  11. J. Stanisic, D. Kosikowski, and P.S. Mohanty, High-Speed Visualization and Plume Characterization of the Hybrid Spray Process, J. Therm. Spray Technnol., 2006, 15(4), p 750-758

    Article  CAS  ADS  Google Scholar 

  12. D.L. Hale, W.D. Swank, and D.C. Haggard, In-Flight Particle Measurements of Twin Wire Electric Arc Sprayed Aluminum, J. Therm. Spray Technol., 1998, 7(1), p 58-63

    CAS  ADS  Google Scholar 

  13. M.P. Planche, H. Liao, and C. Coddet, Relationships Between In-Flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions, Surf. Coat. Technol., 2004, 182, p 215-226

    Article  CAS  Google Scholar 

  14. W. Tillmann, E. Vogli, and M. Abdulgader, Diagnostics of Cored Wire Arc Spraying for Wear Resistant Coatings, The Coating in Manufacturing Engineering, Vol 10, Fr.-W. Bach, K.D. Bouzakis, B. Denkena, and M. Geiger, Ed., Oct 25-26 (Hannover, Germany), 2007, p 323-332

  15. W. Tillmann, E. Vogli, M. Abdulgader, S. Turek, and M. Gurris, Particle Formation During Arc Spraying with Cored Wires, J. Therm. Spray Technol., 2008, 17(5-6), p 966-973

    Article  CAS  ADS  Google Scholar 

  16. W. Tillmann, E. Vogli, and M. Abdulgader, Asymmetric Melting Behavior in Twin Wire Arc Spraying with Cored Wires, J. Therm. Spray Technol., 2008, 17(5-6), p 974-982

    Article  CAS  ADS  Google Scholar 

  17. I. Gedzevicius, R. Bolot, H. Liao, C. Coddet, and A.V. Valiulis, Application of CFD for Wire-Arc Nozzle Geometry Improvement, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 977-980

  18. J. Wilden, J.P. Bergmann, A. Schwenk, K. Landes, and S. Zimmermann, Supersonic Nozzles for the Wire Arc Spraying, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., Mar 4-6, 2005 (Basel, Switzerland), DVS Deutscher Verband für Schweißen, 2005, p 1068-1073

  19. Fr.-W. Bach, D.T. Copitzky, G. Tegeder, and J. Prehm, Einsatz der PIV-Technik zum Bestimmen des Einflusses unterschiedlicher Düsengeometrien auf den Lichtbogenspritzprozess (Application of PIV-Technique to Determine the Influence of Different Nozzle Geometries on the Arc Spraying Process), International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., Mar 4-6 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 450-453 (in German)

  20. www.DantecDynamics.com

  21. www.TSI.com

  22. G. Gouesbet, A Review on Measurements of Particle Velocities and Diameters by Laser Techniques, with Emphasis on Thermal Plasmas, Plasma Chem. Plasma Process., 1985, 5(2), p 91-117

    Article  Google Scholar 

  23. P. Fauchais, J.F. Coudert, and M. Vardelle, Diagnostics in Thermal Plasma Processing, Plasma Diagnostics, 1989, p 410-432

  24. H.D. vom Stein, H.J. Pfeifer, and B. Koch, Geschwindigkeitsmessungen an kurzzeitigen Strömungsvorgängen mittels Laserstrahlung (Velocity Measurements on Short-Time Flow Phenomena through Laser Radiation), Opt. Commun., 1969, 1, p 207-210 (in German)

    Article  ADS  Google Scholar 

  25. H.J. Pfeifer and H.D. vom Stein, A Measuring Technique to Determine the Turbulence Degree in Gas Flows with a CW-laser, Opt. Commun., 1971, 3, p 387-390

    Article  ADS  Google Scholar 

  26. S. Hanson, Broadening of the Measured Frequency Spectrum in a Differential Laser Anemometer due to Interference Plane Gradients, J. Phys. D: Appl. Phys., 1973, 2, p 164-172

    Article  ADS  Google Scholar 

  27. F. Durst, A. Melling, and J.H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry, Academic Press, London, 1976, p 412

    Google Scholar 

  28. M. Hugenschmidt, Lasermesstechnik, Diagnostik der Kurzzeitphysik (Laser Measuring, Diagnostics of Short-Time Physics), Springer, 2007, p 131-142

  29. G. Mie, Beiträge zur Optik trüber Medien, spezielle kolloidale Metallösungen (Contribution to Optics Cluded Media, Special Colloidal Metal Solutions), Ann. Phys. Berlin, 1908, 330, p 377-445

    Article  ADS  Google Scholar 

  30. W. Mayr, “Bestimmung der lokalen Geschwindigkeits- und Größenverteilung von Partikeln im Plasmastrahl mittels Laser-Doppler-Anemometrie (Determination of Local Velocity and Size Distribution of Particles in Plasma Jet Through Laser-Doppler-Anemometry),” Ph.D. Thesis, UniBw München, 1983 (in German)

  31. F. Durst, A. Melling, and J. Whitelaw, Theorie und Praxis der Laser-Doppler-Anemometrie (Theory and Practice of Laser-Doppler-Anemometry), G. Braun-Verlag Karlsruhe, 1987

  32. A. Reusch, “Die Entwicklung eines Laser-Doppler-Meßsystems und seine Anwendung bei Verfahren des thermischen Beschichtens (Development of a Laser-Doppler-Measuring System und its Application for Thernal Spraying),” Ph.D. Thesis, UniBw München, 1995 (in German)

  33. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, Effect of Nozzle Configuration, Gas Pressure and Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575

    Article  ADS  Google Scholar 

  34. R. Spores and E. Pfender, Flow Structure of a Turbulent Thermal Plasma Jet, Surf. Coat. Technol., 1989, 37, p 251-270

    Article  Google Scholar 

  35. D.A. Ervine and H.T. Falvey, Behavior of Turbulent Water Jets in the Atmosphere and in Plunge Pools, Proc. Inst. Civil Eng., 1987, 83(2), p 295-314

    Google Scholar 

  36. P.K. Wu, R.F. Miranda, and G.M. Faeth, Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Jets, Atomization Spray, 1995, 5, p 175-196

    CAS  Google Scholar 

  37. N. Hussary and J. Heberlein, Metal Droplet Formation Mechanisms in the Wire Arc Spraying Process, Proceedings of the 48th International Research Colloquium, Sept 22-25 (Illmenau, Germany), 2003

  38. S. Zimmermann and K.D. Landes, LDA and PSI—In Combination a Modern Particle Diagnostic System, 12. Workshop Plasma Technology, TU Ilmenau, Germany, 2004

  39. J. Wilden, J.P. Bergmann, S. Jahn, K. Landes, and S. Zimmermann, Influence of the Voltage Modulation Frequency on Voltage Trace and Wire Arc Coatings Properties, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., Mar 4-6, 2005 (Basel, Switzerland), DVS Deutscher Verband für Schweißen, 2005, p 393-398

  40. S. Zimmermann, S. Lange, J.L. Marqués, G. Forster, K. Landes, and J. Schein, Ausgewählte diagnostische Verfahren für den Plasmaspritzprozess (Selected Diagnostic Methods for the Plasma Spray Process), Therm. Spray Bull., 2008, 2, p 128-138

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the DFG (German Science Foundation) and AiF (German Working Group of Industrial Research Association) within the Collaborative Research Center SFB 708 and within Research Center “Thermal Spraying”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Schein or W. Tillmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, S., Vogli, E., Kauffeldt, M. et al. Supervision and Measuring of Particle Parameters During the Wire-Arc Spraying Process with the Diagnostic Systems Accuraspray-g3 and LDA (Laser-Doppler-Anemometry). J Therm Spray Tech 19, 745–755 (2010). https://doi.org/10.1007/s11666-009-9466-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9466-3

Keywords

Navigation