Skip to main content
Log in

Effect of Silicon Nitride Particles on the Sliding Wear Characteristics of Functionally Graded Aluminium Composite

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, high-hardness Silicon Nitride (Si3N4) particles were spatially dispersed with aluminium A356 alloy, making A356 reinforced with 10 wt.% Si3N4 Functionally Graded Metal Matrix Composite (A356-10 wt.% Si3N4 FGMMC) through vertical centrifugal casting route. The gradient particle distribution and phase analysis were verified along the radial direction. The hardness and sliding wear behaviour were evaluated using Vicker’s microhardness tester and pin-on-disc tribometer. The superior microhardness (182 HV) was observed at the exterior surface, which was 73% higher than the interior surface. In the dissimilar zones of the FGMMC, wear performance was assessed with the applied loads of 20, 40, and 60 N at sliding velocities of 2, 3 and 4 m/s during the sliding distances of 500, 1250, and 2000 m. Taguchi's technique and Analysis of Variance (ANOVA) were implemented to pinpoint the optimum and momentous sliding wear variables. The lowest wear rate of 0.749 × 10−4 is identified at the ceramic wealthy zone with 20 N, 2 m/s, 500 m, and ANOVA analysis revealed that the various zones had a major impact (30.70%) followed by load (28.76%). The worn surface investigation confirmed the production of a stable tribo-oxide layer and revealed the enhanced wear resistance on the wealthy ceramic zone. The microstructural, hardness and wear experiment's findings confirmed the gradient distribution of Si3N4 in the A356 alloy from the exterior to the interior surface, with a maximum in the exterior periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hu. Xin-ping, Y. Zhao, Q. Wang, X.-Z. Zhang, R.-X. Li, and B.-R. Zhang, Effect of Pouring and Cooling Temperatures on Microstructures and Mechanical Properties of As-Cast and T6 Treated A356 Alloy, China Foundry, 2019, 16, p 380–385. https://doi.org/10.1007/s41230-019-9068-8

    Article  Google Scholar 

  2. E. Jayakumar, T. Varghese, T.P.D. Rajan, and B.C. Pai, Reciprocating Wear Analysis of Magnesium-Modified Hyper-eutectic Functionally Graded Aluminium Composites, Trans. Indian Inst. Met., 2019, 72, p 1643–1649. https://doi.org/10.1007/s12666-019-01706-z

    Article  CAS  Google Scholar 

  3. Y. Liu, J. Jiang, G. Xiao, Y. Zhang, M. Huang, Y. Wang, and L. Zhu, Effects of Heating Temperature and Holding Time on Microstructure and Mechanical Properties of Thixoforged A356 Aluminum Alloy Parts, J. Mater. Eng. Perform., 2023, 32, p 2062–2073. https://doi.org/10.1007/s11665-022-07281-7

    Article  CAS  Google Scholar 

  4. N. Singh, R.M. Belokar, and R.S. Walia, A Critical Review on Advanced Reinforcements and Base Materials on Hybrid Metal Matrix Composites, Silicon, 2020, 14(335), p 358. https://doi.org/10.1007/s12633-020-00853-z

    Article  CAS  Google Scholar 

  5. Ranjeet Kumar Arya, Rajan Kumar, and Amit Telang, Influence of Microstructure on Tribological Behaviors of Al6061 Metal Matrix Composite Reinforced with Silicon Nitride (Si3N4) and Silicon Carbide (SiC) Micro Particles, Silicon, 2023, 15, p 3987–4001. https://doi.org/10.1007/s12633-023-02309-6

    Article  CAS  Google Scholar 

  6. M.I.U. Haq and A. Anand, Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite, Silicon, 2018, 10, p 1819–1829. https://doi.org/10.1007/s12633-017-9675-1

    Article  CAS  Google Scholar 

  7. K. Raju and M. Balakrishnan, Dry Sliding Wear Behavior of Aluminum Metal Matrix Composite Reinforced with Lithium and Silicon Nitride, Silicon, 2022, 14, p 115–125. https://doi.org/10.1007/s12633-020-00793-8

    Article  CAS  Google Scholar 

  8. V. Mahesh Kumar and C.V. Venkatesh, A Comprehensive Review on Material Selection, Processing, Characterization and Applications of Aluminium Metal Matrix Composites, Mater. Res. Express, 2019, 6(7), p 072001. https://doi.org/10.1088/2053-1591/ab0ee3

    Article  CAS  Google Scholar 

  9. B. Saleh, J. Jiang, A. Ma, D. Song, and D. Yang, Effect of Main Parameters on the Mechanical and Wear Behaviour of Functionally Graded Materials by Centrifugal Casting: A Review, Met. Mater. Int., 2019, 25, p 1395–1409. https://doi.org/10.1007/s12540-019-00273-8

    Article  Google Scholar 

  10. M. Sam, R. Jojith, and N. Radhika, Progression in Manufacturing of Functionally Graded Materials and Impact of Thermal Treatment—A Critical Review, J. Manuf. Process., 2021, 68, p 1339–1377. https://doi.org/10.1016/j.jmapro.2021.06.062

    Article  Google Scholar 

  11. R. Ambigai and S. Prabhu, Analyzing the Mechanical Properties and Characterization of Aluminium (ADC-14) Based Functionally Graded Materials (FGM), Silicon, 2022, 14, p 2839–2850. https://doi.org/10.1007/s12633-021-01050-2

    Article  CAS  Google Scholar 

  12. Bassiouny Saleh, Jinghua Jiang, Reham Fathi, Tareq Al-hababi, Xu. Qiong, Lisha Wang, Dan Song, and M. Aibin, 30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges, Compos. Part B: Eng., 2020, 201, p 108376. https://doi.org/10.1016/j.compositesb.2020.108376

    Article  Google Scholar 

  13. R. Jojith, R.C. Akhil, and N. Radhika, Characterization and Property Analysis of Heat-Treated Functionally Graded Al8Si3Cu Alloy and TiC Reinforced Composite, Trans. Indian Inst. Met., 2021, 74(2), p 459–471. https://doi.org/10.1007/s12666-020-02131-3

    Article  CAS  Google Scholar 

  14. N. Radhika and R. Raghu, Effect of Centrifugal Speed in Abrasive Wear Behavior of Al-Si5Cu3/SiC Functionally Graded Composite Fabricated by Centrifugal Casting, Trans. Indian Inst. Met., 2018, 71, p 715–726. https://doi.org/10.1007/s12666-017-1204-9

    Article  CAS  Google Scholar 

  15. B.I. Saleh and M.H. Ahmed, Development of Functionally Graded Tubes Based on Pure Al/Al2O3 Metal Matrix Composites Manufactured by Centrifugal Casting for Automotive Applications, Met. Mater. Int., 2020, 26, p 1430–1440. https://doi.org/10.1007/s12540-019-00391-3

    Article  CAS  Google Scholar 

  16. R.K. Verma and M.K. Chopkar, Dry Sliding Wear Investigation of Centrifugally Casted AA6061–B4C Functionally Graded Metal Matrix Composite Material by Response Surface Methodology (RSM), Arab. J. Sci. Eng., 2023, 48, p 4095–4107. https://doi.org/10.1007/s13369-022-07461-6

    Article  CAS  Google Scholar 

  17. R. Jojith and N. Radhika, Investigation of Mechanical and Tribological Behaviour of Heat-Treated Functionally Graded Al-7Si/B4C Composite, Silicon, 2020, 12, p 2073–2085. https://doi.org/10.1007/s12633-019-00294-3

    Article  CAS  Google Scholar 

  18. E. Jayakumar, A.P. Praveen, T.P.D. Rajan, and B.C. Pai, Studies on Tribological Characteristics of Centrifugally Cast SiCp-Reinforced Functionally Graded A319 Aluminium Matrix Composites, Trans. Indian Inst. Met., 2018, 71, p 2741–2748. https://doi.org/10.1007/s12666-018-1442-5

    Article  CAS  Google Scholar 

  19. M. Uthayakumar, K.V. Babu, S.T. Kumaran, S.S. Kumar, J.W. Jappes, and T.P.D. Rajan, Study on the Machining of Al–SiC Functionally Graded Metal Matrix Composite Using Die-Sinking EDM, Part. Sci. Technol., 2019, 37(1), p 103–109. https://doi.org/10.1080/02726351.2017.1346020

    Article  CAS  Google Scholar 

  20. Premkumar John, Rajeev Vamadevan Rajam, Rajkumar Mattacaud Ramachandralal, and Krishnakumar Komalangan, Dry Wear Behavior of A356-SiCp Functionally Graded Composite in Unidirectional and Reciprocating Contacts, Ind. Lubr. Tribol., 2021, 73(8), p 1105–1112. https://doi.org/10.1108/ILT-04-2021-0139

    Article  Google Scholar 

  21. B.A. Mudasar Pasha and Mohammed Kaleemulla, Processing and Characterization of Aluminum Metal Matrix Composites: An Overview, Rev. Adv. Mater. Sci., 2018, 56, p 79–90. https://doi.org/10.1515/rams-2018-0039

    Article  CAS  Google Scholar 

  22. M. Akbari and P. Asadi, Effects of Different Cooling Conditions on Friction Stir Processing of A356 Alloy: Numerical Modeling and Experiment, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2022, 236(8), p 4133–4146. https://doi.org/10.1177/09544062211045655

    Article  CAS  Google Scholar 

  23. A. Balikai, H. Adarsha, and R. Keshavamurthy, Microstructure and Nanoindentation Response of Si3N4-Reinforced Magnesium-Based Composite Synthesized by Powder Metallurgy Route, J. Inst. Eng. India Ser. D, 2022, 103, p 235–247. https://doi.org/10.1007/s40033-021-00304-y

    Article  CAS  Google Scholar 

  24. Paramjit Singh, Ravinderjit Singh Walia, and Chandra Shekhar Jawalkar, The Influence of the Addition of MoS2 Particles on Stir Cast Al-7175/Si3N4-Based Hybrid Composites Mechanical and Physical Properties, Int. J. Met. Cast., 2023 https://doi.org/10.1007/s40962-023-01089-4

    Article  Google Scholar 

  25. K. Vinoth Babu, J.T. Winowlin Jappes, T.P.D. Rajan, and M. Uthayakumar, Dry Sliding Wear Studies on SiC Reinforced Functionally Graded Aluminium Matrix Composites, Proc. Inst. Mech. Eng., Part L J. Mater. Des. Appl., 2016, 230(1), p 182–189. https://doi.org/10.1177/1464420714556665

    Article  Google Scholar 

  26. Xiaobo Liu, Miao Yang, Dekun Zhou, and Yuguang Zhao, Microstructure and Wear Resistance of Mg2Si-Al Composites Fabricated Using Semi-Solid Extrusion, Metals, 2020, 10(5), p 596. https://doi.org/10.3390/met10050596

    Article  CAS  Google Scholar 

  27. P. Sharma, S. Sharma, and D. Khanduja, Production and Some Properties of Si3N4 Reinforced Aluminium Alloy Composites, J. Asian Ceram. Soc., 2015, 3(3), p 352–359. https://doi.org/10.1016/j.jascer.2015.07.002

    Article  Google Scholar 

  28. R. Jojith, N. Radhika, and M. Govindaraju, Reciprocating Wear Behavioural Analysis of Heat-Treated Aluminium ZrO2/Al7Si0.3Mg Functionally Graded Composite through Taguchi’s Optimization Method, Silicon, 2022, 14, p 11337–11354. https://doi.org/10.1007/s12633-022-01862-w

    Article  CAS  Google Scholar 

  29. R. Ambigai and S. Prabhu, Characterization and Mechanical Analysis of Functionally Graded Al-Si3N4 Composites through Centrifugal Process, J. Mater. Eng. Perform., 2021, 30, p 7328–7342. https://doi.org/10.1007/s11665-021-05963-2

    Article  CAS  Google Scholar 

  30. R. Jojith and N. Radhika, Heat-Treatment Studies on Mechanical and Reciprocating Wear Behaviour of Functionally Graded A356 Alloy, Mater. Res. Express, 2019, 6(11), p 11652. https://doi.org/10.1088/2053-1591/ab4dd7

    Article  Google Scholar 

  31. R. Jojith and N. Radhika, Reciprocal Dry Sliding Wear of SiCp/Al–7Si-0.3 Mg Functionally Graded Composites: Influence of T6 Treatment and Process Parameters, Ceram. Int., 2021, 47(21), p 30459–30470. https://doi.org/10.1016/j.ceramint.2021.07.225

    Article  CAS  Google Scholar 

  32. A. Mohan and K.S. Sajikumar, Fabrication and Characterization of Centrifugally Cast Functionally Graded A 356-SiCp Metal Matrix Composites, Mater. Today Proc., 2021, 46(19), p 9508–9513. https://doi.org/10.1016/j.matpr.2020.03.711

    Article  CAS  Google Scholar 

  33. S.P. Singh, K.A.V. Geethan, D. Elilraja, T. Prabhuram, and J.I. Durairaj, Optimization of Dry Sliding Wear Performance of Functionally Graded Al6061/20% SiC Metal Matrix Composite using Taguchi Method, Mater. Today Proc., 2020, 22(4), p 2824–2831. https://doi.org/10.1016/j.matpr.2020.03.414

    Article  CAS  Google Scholar 

  34. R. Jojith and N. Radhika, Mechanical and Tribological Properties of LM13/TiO2/MoS2 Hybrid Metal Matrix Composite Synthesized by Stir Casting, Part. Sci. Technol., 2019, 37(5), p 570–582. https://doi.org/10.1080/02726351.2017.1407381

    Article  CAS  Google Scholar 

  35. P. Loganathan, A. Gnanavelbabu, and K. Rajkumar, Analysis and Characterization of Friction Behaviour on AA7075/ZrB2 Composite under Dry Sliding Condition, Mater. Res. Express, 2019, 6(2), p 026576. https://doi.org/10.1088/2053-1591/aaf1fe

    Article  CAS  Google Scholar 

  36. R. Jojith and N. Radhika, Heat-Treatment Studies on Mechanical and Reciprocating Wear Behaviour of Functionally Graded A356 Alloy, Mater. Res. Express, 2019, 6(11), p 1165c2. https://doi.org/10.1088/2053-1591/ab4dd7

    Article  Google Scholar 

  37. Tirlangi Satyanarayana, Putti Srinivasa Rao, and M. Gopi Krishna, Influence of Wear Parameters on Friction Performance of A356 Aluminum—Graphite/Granite Particles Reinforced Metal Matrix Hybrid Composites, Heliyon, 2019, 5, p e01770. https://doi.org/10.1016/j.heliyon.2019.e01770

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deepak M. Shinde, Suswagata Poria, and Prasanta Sahoo, Dry Sliding Wear Behavior of Ultrasonic Stir Cast Boron Carbide Reinforced Aluminium Nanocomposites, Surf. Topogr. Metrol. Prop., 2020, 8(2), p 025033. https://doi.org/10.1088/2051-672X/ab9d71

    Article  CAS  Google Scholar 

  39. N. Yuvaraj, G. Yashwant Koli, and Plash Issar Vedabouriswaran, Mechanical and Tribological Properties of AA6061/SiC/Aloe Vera Powder Hybrid Al Composites Fabricated by Stir Casting, Silicon, 2023, 15, p 2451–2465. https://doi.org/10.1007/s12633-022-02168-7

    Article  CAS  Google Scholar 

  40. P. Loganathan, K. Rajkumar, A. Gnanavelbabu, and K. Vishal, Aluminium Silicate Concentration and Coordination Effect with Tungsten Sulphide Improving Dry Sliding Wear Characteristics of AA7075 Alloy Composites, Silicon, 2022, 14, p 12615–12631. https://doi.org/10.1007/s12633-022-01972-5

    Article  CAS  Google Scholar 

  41. R.K. Verma, D. Patel, and M.K. Chopkar, Wear Behavior Investigation of Al-B4C Functionally Graded Composite through Taguchi’s Design of Experiment, J. Eng. Res., 2023 https://doi.org/10.1016/j.jer.2023.100095

    Article  Google Scholar 

  42. R. Soundararajan, S. Sivasankaran, N. Babu, and G.P.R. Adhithya, Appraisal of Tribological Properties of A356 with 20% SiC Composites under Dry Sliding Condition, J. Braz. Soc. Mech. Sci. Eng., 2020, 42, p 1–12. https://doi.org/10.1007/s40430-020-2231-8

    Article  CAS  Google Scholar 

  43. M. Kumar and A. Megalingam, Tribological Characterization of Al6061/Alumina/Graphite/Redmud Hybrid Composite for Brake Rotor Application, Part. Sci. Technol., 2017, 37(3), p 261–274. https://doi.org/10.1080/02726351.2017.1367747

    Article  CAS  Google Scholar 

  44. P. Samal, R.K. Mandava, and P.R. Vundavilli, Dry Sliding Wear Behavior of Al 6082 Metal Matrix Composites Reinforced with Red Mud Particles, SN Appl. Sci., 2020, 2, p 1–11. https://doi.org/10.1007/s42452-020-2136-2

    Article  CAS  Google Scholar 

  45. S. Subramanian, B. Arunachalam, K. Nallasivam, and A. Pramanik, Investigations on Tribo-Mechanical Behaviour of Al-Si10-Mg/Sugarcane Bagasse Ash/SiC Hybrid Composites, China Foundry, 2019, 14(4), p 277–284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prathap Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathap Singh, S., Ananthapadmanaban, D. Effect of Silicon Nitride Particles on the Sliding Wear Characteristics of Functionally Graded Aluminium Composite. J. of Materi Eng and Perform 33, 2875–2896 (2024). https://doi.org/10.1007/s11665-023-09011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-09011-z

Keywords

Navigation