Skip to main content
Log in

Investigation of Mechanical and Tribological Behaviour of Heat-Treated Functionally Graded Al-7Si/B4C Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current study focuses on improving the mechanical and reciprocating wear characteristics of centrifugally cast functionally graded A356(Al-7Si-0.3 Mg)/10 wt.% B4C composite through T6 heat-treatment. Comparative analysis was performed between as-cast and heat-treated composite. Metallographic analysis confirmed the presence of reinforcement particles alongside grain boundaries and spheroidised eutectic silicon particles in heat-treated composite. Outer layer of heat-treated composite displayed superior hardness (24.09%), ultimate tensile strength (44.8%) and tribological properties when compared to outer layer of as-cast composite. With increasing applied load (15, 25, 35 N), wear rate and co-efficient of friction increased whereas wear rate and co-efficient of friction decreased as sliding distance (500, 1000, 1500 m) increased. Worn morphologies confirmed extreme delamination wear and particle pull-out at high applied loads whereas traces of oxide formations were observed at high sliding distance. Heat-treated composites have superior characteristics due to the presence of spheroidised eutectic silicon particles and precipitate formation, which makes it an alternative material for reciprocating applications in aerospace and automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radhika N, Raghu R (2017) The mechanical properties and abrasive wear behavior of functionally graded aluminum/AlB2 composites produced by centrifugal casting. Part Sci Technol 35:575–582. https://doi.org/10.1080/02726351.2016.1184728

    Article  CAS  Google Scholar 

  2. Li Q, Li B, Li J, Xia T, Lan Y, Guo T (2017) Effects of the addition of mg on the microstructure and mechanical properties of hypoeutectic Al–7% Si alloy. Int J Metal Cast 11:823–830. https://doi.org/10.1007/s40962-016-0131-6

    Article  CAS  Google Scholar 

  3. Li R, Li R, Zhao Y et al (2004) Age-hardening behavior of cast Al–Si base alloy. Mater Lett 58:2096–2101. https://doi.org/10.1016/J.MATLET.2003.12.027

    Article  CAS  Google Scholar 

  4. Ogris E, Wahlen A, Lüchinger H, Uggowitzer P (2002) On the silicon spheroidization in Al–Si alloys. J Light Met 2:263–269. https://doi.org/10.1016/S1471-5317(03)00010-5

    Article  Google Scholar 

  5. Radhika N, Raghu R (2016) Development of functionally graded aluminium composites using centrifugal casting and influence of reinforcements on mechanical and wear properties. Trans Nonferrous Met Soc China 26:905–916. https://doi.org/10.1016/S1003-6326(16)64185-7

    Article  CAS  Google Scholar 

  6. Antil P (2018) Experimental analysis on wear behavior of PMCs reinforced with electroless coated silicon carbide particulates. Silicon 1–10

  7. SiCp/Glass fibers reinforced epoxy composites: wear and erosion behavior. Indian J Eng Mater Sci 25(2):122–130

  8. Elmadagli M, Perry T, Alpas AT (2007) A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262:79–92. https://doi.org/10.1016/J.WEAR.2006.03.043

    Article  CAS  Google Scholar 

  9. Singh N, Mir IUH, Raina A, Anand A, Kumar V, Sharma SM (2018) Synthesis and tribological investigation of Al-SiC based nano hybrid composite. Alexandria Eng J 57(3):1323–1330. https://doi.org/10.1016/j.aej.2017.05.008

    Article  Google Scholar 

  10. Yuan WH, An BL (2012) Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite. Trans Nonferrous Metals Soc China 22(9):2080–2086. https://doi.org/10.1016/S1003-6326(11)61431-3

  11. Osório WR, Garcia A (2002) Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions. Mater Sci Eng A 325:103–111. https://doi.org/10.1016/S0921-5093(01)01455-1

    Article  Google Scholar 

  12. Taghavi F, Saghafian H, Kharrazi YHK (2009) Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Mater Des 30:1604–1611. https://doi.org/10.1016/J.MATDES.2008.07.032

    Article  CAS  Google Scholar 

  13. Zhang D, Zheng L, StJohn D (2002) Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7wt.%Si–0.3wt.%Mg alloy. J Light Met 2:27–36. https://doi.org/10.1016/S1471-5317(02)00010-X

    Article  Google Scholar 

  14. Toptan F, Kilicarslan A, Karaaslan A et al (2010) Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites. Mater Des 31:S87–S91. https://doi.org/10.1016/J.MATDES.2009.11.064

    Article  CAS  Google Scholar 

  15. Radhika N, Raghu R (2015) Mechanical and tribological properties of functionally graded aluminium/zirconia metal matrix composite synthesized by centrifugal casting. Int J Mater Res 106:1174–1181. https://doi.org/10.3139/146.111293

    Article  CAS  Google Scholar 

  16. Baradeswaran A, Elaya Perumal A (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos Part B Eng 54:146–152. https://doi.org/10.1016/J.COMPOSITESB.2013.05.012

    Article  CAS  Google Scholar 

  17. Mandal A, Murty BS, Chakraborty M (2009) Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear 266:865–872. https://doi.org/10.1016/J.WEAR.2008.12.011

    Article  CAS  Google Scholar 

  18. Shabani MO, Mazahery A (2011) Prediction of wear properties in A356 matrix composite reinforced with B4C particulates. Synth Met 161:1226–1231. https://doi.org/10.1016/J.SYNTHMET.2011.04.009

    Article  CAS  Google Scholar 

  19. Lashgari HR, Zangeneh S, Shahmir H et al (2010) Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10%B4C cast composites. Mater Des 31:4414–4422. https://doi.org/10.1016/J.MATDES.2010.04.034

    Article  CAS  Google Scholar 

  20. Chen R, Iwabuchi A, Shimizu T (2000) The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite. Wear 238:110–119. https://doi.org/10.1016/S0043-1648(99)00328-2

    Article  CAS  Google Scholar 

  21. Mindivan H (2010) Reciprocal sliding wear behaviour of B4C particulate reinforced aluminum alloy composites. Mater Lett 64:405–407. https://doi.org/10.1016/J.MATLET.2009.11.032

    Article  CAS  Google Scholar 

  22. Vencl A, Bobic I, Arostegui S et al (2010) Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC + graphite particles. J Alloys Compd 506:631–639. https://doi.org/10.1016/J.JALLCOM.2010.07.028

    Article  CAS  Google Scholar 

  23. Radhika N, Raghu R (2015) Evaluation of dry sliding wear characteristics of LM 13 Al/B4C composites. Tribol Ind 37(1)

  24. Jojith R, Radhika N (2018) Fabrication of LM 25/WC functionally graded composite for automotive applications and investigation of its mechanical and wear properties. J Braz Soc Mech Sci Eng 40:292–213. https://doi.org/10.1007/s40430-018-1217-2

    Article  CAS  Google Scholar 

  25. Amigó V, Ortiz J, Salvador M (2000) Microstructure and mechanical behavior of 6061Al reinforced with silicon nitride particles, processed by powder metallurgy. Scr Mater 42:383–388. https://doi.org/10.1016/S1359-6462(99)00356-5

    Article  Google Scholar 

  26. Ali S, Mohammad H (2009) Effect of magnesium addition on the wetting of alumina by aluminium. Appl Surf Sci 255:8202–8206. https://doi.org/10.1016/j.apsusc.2009.05.044

  27. ASM International. Handbook Committee (1991) ASM handbook. ASM International, Materials Park, OH

    Google Scholar 

  28. Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Design (1980-2015) 66:150–161

    Article  Google Scholar 

  29. Sharma P, Sharma S, Khanduja D (2015) Production and some properties of Si3N4 reinforced aluminium alloy composites. J Asian Ceram Soc 3(3):352–359

    Article  Google Scholar 

  30. Rajan TPD, Pillai RM, Pai BC (2010) Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Mater Charact 61:923–928. https://doi.org/10.1016/J.MATCHAR.2010.06.002

    Article  CAS  Google Scholar 

  31. Beroual S, Boumerzoug Z, Paillard P, Borjon-Piron Y (2019) Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. J Alloys Compd 784:1026–1035. https://doi.org/10.1016/J.JALLCOM.2018.12.365

    Article  CAS  Google Scholar 

  32. Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Akbari MK, Pakseresht AH, Ghasali E, Naebe M (2016) Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling. Mater Sci Eng A 658:135–149. https://doi.org/10.1016/j.msea.2016.01.114

    Article  CAS  Google Scholar 

  33. Rebba B, Ramanaiah N (2014) Studies on mechanical properties of 2024 Al-B4C composites. Advanced Materials Manufacturing & Characterization 4(1):42–46. https://doi.org/10.11127/ijammc.2014.03.06

    Article  Google Scholar 

  34. Kumar S, Chakraborty M, Sarma VS, Murty BS (2008) Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265(1–2):134–142

    Article  CAS  Google Scholar 

  35. Lakshmipathy J, Kulendran B (2014) Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. Int J Refract Met Hard Mater 46:137–144. https://doi.org/10.1016/J.IJRMHM.2014.06.007

    Article  CAS  Google Scholar 

  36. Haq MIU, Anand A (2018) Dry sliding friction and wear behavior of AA7075-Si 3 N 4 composite. Silicon 10(5):1819–1829

    Article  Google Scholar 

  37. Haq MIU, Anand A (2018) Dry sliding friction and wear behaviour of hybrid AA7075/Si3N4/Gr self lubricating composites. Mater Res Express 5(6):066544

    Article  Google Scholar 

  38. Zhang G, Schlarb AK (2009) Morphologies of the wear debris of polyetheretherketone produced under dry sliding conditions: correlation with wear mechanisms. Wear 266:745–752. https://doi.org/10.1016/J.WEAR.2008.08.015

    Article  CAS  Google Scholar 

  39. Kaushik NC, Rao RN (2016) The effect of wear parameters and heat treatment on two body abrasive wear of Al–SiC–Gr hybrid composites. Trib Int 96:184–190. https://doi.org/10.1016/j.triboint.2015.12.045

    Article  CAS  Google Scholar 

  40. Molinari JF, Aghababaei R, Brink T, Frérot L, Milanese E (2018) Adhesive wear mechanisms uncovered by atomistic simulations. Friction 6(3):245–259. https://doi.org/10.1007/s40544-018-0234-6

    Article  Google Scholar 

  41. Toptan F, Kerti I, Rocha LA (2012) Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites. Wear 290-291:74–85. https://doi.org/10.1016/j.wear.2012.05.007

    Article  CAS  Google Scholar 

  42. Rajeev VR, Dwivedi DK, Jain SC (2010) Dry reciprocating wear of Al–Si–SiCp composites: a statistical analysis. Trib Int 43:1532–1541. https://doi.org/10.1016/j.triboint.2010.02.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Radhika.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jojith, R., Radhika, N. Investigation of Mechanical and Tribological Behaviour of Heat-Treated Functionally Graded Al-7Si/B4C Composite. Silicon 12, 2073–2085 (2020). https://doi.org/10.1007/s12633-019-00294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00294-3

Keywords

Navigation