Skip to main content
Log in

Development of Functionally Graded Tubes Based on Pure Al/Al2O3 Metal Matrix Composites Manufactured by Centrifugal Casting for Automotive Applications

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper studies the influence of main parameters on the mechanical properties and wear behaviour of functionally graded materials pure Aluminum reinforced by various weight fractions of aluminium oxide (Al2O3). A Functionally graded (FG) pure aluminium/Al2O3 tube was processed by horizontal centrifugal casting method. The hollow tube dimensions are 230 mm outer diameter x 12 mm thickness x 180 mm length. The properties of these FG tubes were compared with unreinforced alloy. Hardness and tensile results in the radial direction showed that the hardness and tensile in accordance with the gradient microstructure was improved from inner zone to outer zone. Wear tests were carried out for different test duration at a constant sliding speed of 8 m/s and loads applied are 14, 24 and 40 N. In all test conditions the wear rate in the outer layer was minimum compared to other layers. In the surface analysis, scanning electron microscope indicated the presence of delamination, wear debris and cracks. FG tubes reinforced by Al2O3 particles have increased mechanical properties and wear resistance compared to its unreinforced alloy (matrix alloy) and is suitable for use in automobile and transport applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Akinlabi, R. Mahamood, Functionally Graded Materials (Springer, Cham, 2017)

    Google Scholar 

  2. M. Gasik, Int. J. Mater. Prod. Technol. 39, 20 (2010)

    Article  CAS  Google Scholar 

  3. A.k. Ashwinkumar, Int. Res. J. Eng. Technol.4, 890 (2017)

  4. H. Sai, A review on functionally gradient materials (FGMs) and their applications, Int. J. Curr. Eng. Tech. 8, 79 (2018)

    Google Scholar 

  5. M. Naebe, K. Shirvanimoghaddam, Appl. Mater. Today 5, 223 (2016)

    Article  Google Scholar 

  6. R.S. Parihar, S.G. Setti, R.K. Sahu, Sci. Eng. Compos. Mater. (2016). https://doi.org/10.1515/secm-2015-0395

    Article  Google Scholar 

  7. B. Kieback, A. Neubrand, H. Riedel, Mater. Sci. Eng. A 362, 81 (2003)

    Article  Google Scholar 

  8. R. Kumar, C. Chandrappa, Int. J. Innov. Res. Sci. Eng. Technol. 3, 15464 (2014)

    Article  Google Scholar 

  9. F. Erdemir, A. Canakci, T. Varol, Trans. Nonferrous Met. Soc. China 25, 3569 (2015)

    Article  CAS  Google Scholar 

  10. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Mater. Charact. 61, 923 (2010)

    Article  CAS  Google Scholar 

  11. Y. Watanabe, H. Sato, Nanocomposites with unique properties and applications in medicine and industry, Review fabrication of functionally graded materials under a centrifugal force (InTech, China, 2011), pp. 133–150

  12. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Trends Biotechnol. 22, 354 (2004)

    Article  CAS  Google Scholar 

  13. V. Bhavar et al., A review on functionally gradient materials (FGMs) and their applications, Mat. Sci.  Eng. 229, 12 (2017)

    Google Scholar 

  14. B. Saleh, J. Jiang, A. Ma, D. Song, D. Yang, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00273-8

    Article  Google Scholar 

  15. E. Jayakumar, A.P. Praveen, T.P.D. Rajan, B.C. Pai, Trans. Indian Inst. Met. (2018). https://doi.org/10.1007/s12666-018-1442-5

    Article  Google Scholar 

  16. N. Radhika, Trans. Indian Inst. Met. 70, 145 (2016)

    Article  Google Scholar 

  17. A.S. Karun, T.P.D. Rajan, U.T.S. Pillai, B.C. Pai, J. Compos. Mater. (2015). https://doi.org/10.1177/0021998315602946

    Article  Google Scholar 

  18. E. Jayakumar, J.C. Jacob, T.P.D. Rajan, M.A. Joseph, B.C. Pai, Metall. Mater. Trans. A 47, 4306 (2016)

    Article  CAS  Google Scholar 

  19. N. Radhika, Tribol. Ind. 38, 425 (2016)

    Google Scholar 

  20. A. Velhinho, J.D. Botas, E. Ariza, J.R. Gomes, L.A. Rocha, Mater. Sci. Forum 456, 871 (2004)

    Article  Google Scholar 

  21. A.C. Vieira, P.D. Sequeira, J.R. Gomes, L.A. Rocha, Wear 267, 585 (2009)

    Article  CAS  Google Scholar 

  22. G. Zheng, et al, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00357-5

    Article  Google Scholar 

  23. K.V. Babu, J.T.W. Jappes, T.P.D. Rajan, J. Mater. Des. Appl. 230, 182 (2014)

    Google Scholar 

  24. T.R. Prabhu, Arch. Civ. Mech. Eng. 17, 20 (2016)

    Article  Google Scholar 

  25. N. Radhika, R. Raghu, Trans. Indian Inst. Met. (2017). https://doi.org/10.1007/s12666-017-1204-9

    Article  Google Scholar 

  26. M. Ravikumar, H. Reddappa, R. Suresh, Silicon. (2018). https://doi.org/10.1007/s12633-018-9788-1

    Article  Google Scholar 

  27. I.M. EL-Galy, B.I. Bassiouny, M.H. Ahmed, Key Eng. Mater. 786, 276 (2018)

    Article  Google Scholar 

  28. S.O. Yılmaz, S. Buytoz, J. Mater. Sci. 42, 4485 (2007)

    Article  Google Scholar 

  29. T. Prasad, T. Chikkanna, Int. J. Adv. Eng. Technol. II, 161 (2011)

    Google Scholar 

  30. S. Junus, A. Zulfia, Mater. Sci. Forum 857, 179 (2016)

    Article  Google Scholar 

  31. A. Vidyapeetham, N. Radhika, Tribol. Ind. 36, 188 (2014)

    Google Scholar 

  32. N. Radhika, R. Raghu, Trans. Nonferrous Met. Soc. 26, 905 (2016)

    Article  CAS  Google Scholar 

  33. M. Sam, N. Radhika, Part. Sci. Technol. 37, 220 (2019)

    Article  CAS  Google Scholar 

  34. I.M. El-Galy, M.H. Ahmed, B.I. Bassiouny, Alex. Eng. J. 56, 371 (2017)

    Article  Google Scholar 

  35. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Int. J. Cast Met. Res. 21, 214 (2008)

    Article  CAS  Google Scholar 

  36. T.P.D. Rajan, B.C. Pai, Mater. Sci. Forum 690, 157 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Production Engineering Department of Alexandria University and the technicians in appreciation for the help they offered. The authors wish to thank the faculty management for their financial support. Special thanks to LORD INTERNATIONAL Co. for your assistance and participation in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassiouny I. Saleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, B.I., Ahmed, M.H. Development of Functionally Graded Tubes Based on Pure Al/Al2O3 Metal Matrix Composites Manufactured by Centrifugal Casting for Automotive Applications. Met. Mater. Int. 26, 1430–1440 (2020). https://doi.org/10.1007/s12540-019-00391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00391-3

Keywords

Navigation