Skip to main content

Advertisement

Log in

Tensile and Low-Cycle Fatigue Behavior of Dissimilar Friction Welds of Alloy 718/Alloy 720Li

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the microstructural and mechanical properties of dissimilar alloy 718/720Li joints, contemplated for use in hot-end applications of aircraft engine components with service temperatures of up to 730°C. Microstructural characterization, microhardness, and room-temperature tensile tests were performed, followed by high-temperature tensile tests (650°C) on both as-welded and post-direct aging heat-treated conditions to analyze the performance of weld joints at high temperature. Results indicate that the friction welded joint interface in its as-welded condition exhibits lower hardness (240 HV at the heat affected zone) than the alloy 718 base material due to the dissolution of strengthening precipitates. However, post-weld direct aging (DA) with an alloy 718 aging cycle has improved the microhardness to be comparable to the parent materials. The peak hardness value of 478 HV achieved at the interface region is 26% higher than the as-welded condition. The dissimilar 718/720Li FRW joints in direct aging condition show room and high-temperature tensile strengths of 1374 and 1172 MPa, respectively. Similarly, during low-cycle fatigue testing, 718/720Li FRW joints in direct aging condition withstand up to 3648 cycles, comparable to the low-cycle fatigue life of the alloy 718 parent material, with failures away from the FRW weld interface and into the alloy 718 base material. The cyclic softening and hysteresis trend obtained during low-cycle fatigue tests of dissimilar 718/720Li friction welded joints are comparable with alloy 718 parent material. The dissimilar 718/720Li friction welded joints have a peak stress of 1097 MPa, which falls between low-strength alloy 718 and high-strength alloy 720Li. These findings confirm that friction welding of dissimilar nickel-based superalloys, such as alloy 718 with alloy 720Li, is promising for adaptation in aero engine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M. Range, C. Temperature, Special Metals Inconel G-3. Alloy Dig. 70(8) (2021)

  2. J. Rösler, T. Hentrich, and B. Gehrmann, On the Development Concept for a New 718-Type Superalloy with Improved Temperature Capability, Metals (Basel), 2019, 9(10), p 1-20.

    Article  Google Scholar 

  3. J.W. Brooks and P.J. Bridges, Metallurgical Stability of Inconel Alloy, Superalloys, 2012, 718, p 33-42.

    Google Scholar 

  4. J.P. Collier, S.H. Wong, J.K. Tien, J.C. Phillips, and J.K. Tein, Effect of Varying Al, Ti, and Nb Content on The Phase Stability of Inconel 718, Metall. Trans. A Phys. Metall. Mater. Sci., 1988, 19(7), p 1657-1666.

    Article  Google Scholar 

  5. Y.C. Lin, X.Y. Jiang, S.C. Luo, and D.G. He, Study on the Structural Transition and Thermal Properties of Ni3Nb-D022 Phase: First-Principles Calculation, Mater. Des., 2018, 139, p 16-24. https://doi.org/10.1016/j.matdes.2017.10.065

    Article  CAS  Google Scholar 

  6. Special Metals, High-Performance Nickel Alloys (2010) https://www.specialmetals.com/documents/nickel-alloy-handbook.pdf

  7. ATI, ATI 720 Alloy Technical Data Sheet, Allegheny Technol. Inc., (2019), vol 1, pp 2-3, https://www.atimetals.com/Products/Documents/datasheets/nickel-cobalt/nickel-based/ati_720_tds_en_v1.pdf

  8. W. Harrison, M. Whittaker, and S. Williams, Recent Advances in Creep Modelling of the Nickel Base Superalloy, Alloy 720Li, Materials (Basel), 2013, 6(3), p 1118-1137.

    Article  CAS  PubMed  Google Scholar 

  9. K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, and U. Ramamurty, Tensile Properties of Ni-Based Superalloy 720Li: Temperature and Strain Rate Effects, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, 39(10), p 2340-2350.

    Article  Google Scholar 

  10. N. Kumar, C. Pandey, and P. Kumar, Dissimilar Welding of Inconel Alloys with Austenitic Stainless-Steel: A Review, J. Press. Vessel Technol. Trans. ASME, 2023, 145(1), p 1-25.

    Article  Google Scholar 

  11. S. Dev, K.D. Ramkumar, N. Arivazhagan, and R. Rajendran, Investigations on the Microstructure and Mechanical Properties of Dissimilar Welds of Inconel 718 and Sulphur Rich Martensitic Stainless Steel, AISI 416, J. Manuf. Process., 2018, 32, p 685-698.

    Article  Google Scholar 

  12. K.D. Ramkumar, S.D. Patel, S.S. Praveen, D.J. Choudhury, P. Prabaharan, N. Arivazhagan, and M.A. Xavior, Influence of Filler Metals and Welding Techniques on the Structure - Property Relationships of Inconel 718 and AISI 316 L Dissimilar Weldments, Mater. Des., 2014, 62, p 175-188.

    Article  Google Scholar 

  13. S.L. Jeng, H.T. Lee, T.E. Weirich, and W.P. Rebach, Microstructural Study of the Dissimilar Joints of Alloy 690 and SUS 304 L Stainless Steel, Mater. Trans., 2007, 48(3), p 481-489.

    Article  CAS  Google Scholar 

  14. J. Adamiec and N. Konieczna, Assessment of the Hot Cracking Susceptibility of the Inconel 617 Nickel-Based Alloy, Arch. Metall. Mater., 2021, 66, p 241-248.

    CAS  Google Scholar 

  15. G. Baxevanis, F. Siokos, A. Kaldellis, D. Ioannidou, V. Stergiou, P. Skarvelis, and P.E. Tsakiridis, Effect of Post-Weld Heat Treatment on Hardness and Corrosion Resistance of Dissimilar Electron Beam Welded Joints of Inconel 713LC and AISI 4140 Steel, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-07968-5

    Article  Google Scholar 

  16. A. Kumar, S.M. Pandey, and C. Pandey, Dissimilar Weldments of Ferritic/Martensitic Grade P92 Steel and Inconel 617 Alloy: Role of Groove Geometry on Mechanical Properties and Residual Stresses, Arch. Civ. Mech. Eng., 2023 https://doi.org/10.1007/s43452-022-00592-5

    Article  Google Scholar 

  17. A.C. Lingenfelter, The Welding Metallurgy of Nickel Alloys in Gas Turbine Components, Lawrence Livermore National Laboratory (1997)

  18. R. Damodaram, S.G.S. Raman, and K.P. Rao, Effect of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Friction Welded Alloy 718 Joints, Mater. Des., 2014, 53, p 954-961. https://doi.org/10.1016/j.matdes.2013.07.091

    Article  CAS  Google Scholar 

  19. R. Damodaram, S.G.S. Raman, D.V.V. Satyanarayana, G.M. Reddy, and K.P. Rao, Hot Tensile and Stress Rupture Behavior of Friction Welded Alloy 718 in Different Pre-and Post-Weld Heat Treatment Conditions, Mater. Sci. Eng. A, 2014, 612, p 414-422. https://doi.org/10.1016/j.msea.2014.06.076

    Article  CAS  Google Scholar 

  20. M. Preuss, J.Q. Da Fonseca, I. Kyriakoglou, P.J. Withers, and G.J. Baxter, Characterisation of γ’across Inertia Friction Welded Alloy 720Li. In: International symposium on superalloys (2004)

  21. P. V. Neminathan and T. Mohandas, Mechanical Properties of 718 Inertia Weld and Its Comparison with EBW. In: Proceedings of international symposium on superalloys derivatives pp 699-707 (2005)

  22. Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter, Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720Li to IN718, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(7), p 1608-1620.

    Article  Google Scholar 

  23. D.E. Spindler, What Industry Needs to Know about Friction Welding. Weld. J. (Miami); (United States) 73(3) (1994)

  24. E.D. Nicholas, Friction processing technologies, Adv. Mater. Process., 1999, 47, p 69-71.

    Google Scholar 

  25. R. Damodaram, S.G.S. Raman, and K.P. Rao, Microstructure and Mechanical Properties of Friction Welded Alloy 718, Mater. Sci. Eng. A, 2013, 560, p 781-786. https://doi.org/10.1016/j.msea.2012.10.035

    Article  CAS  Google Scholar 

  26. H. Monajati, M. Jahazi, R. Bahrami, and S. Yue, The Influence of Heat Treatment Conditions on Γ′ Characteristics in Udimet® 720, Mater. Sci. Eng. A, 2004, 373(1-2), p 286-293.

    Article  Google Scholar 

  27. B. Cheniti, D. Miroud, R. Badji, P. Hvizdoš, M. Fides, T. Csanádi, B. Belkessa, and M. Tata, Microstructure and Mechanical Behavior of Dissimilar AISI 304L/WC-Co Cermet Rotary Friction Welds, Mater. Sci. Eng. A, 2019, 758, p 36-46.

    Article  CAS  Google Scholar 

  28. Q.Y. Yu, Z.H. Yao, and J.X. Dong, Deformation and Recrystallization Behavior of a Coarse-Grain, Nickel-Base Superalloy Udimet720Li Ingot Material, Mater. Charact., 2015, 107, p 398-410.

    Article  CAS  Google Scholar 

  29. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 2012.

    Google Scholar 

  30. M. Preuss, P.J. Withers, and G.J. Baxter, A Comparison of Inertia Friction Welds in Three Nickel Base Superalloys, Mater. Sci. Eng. A, 2006, 437(1), p 38-45.

    Article  Google Scholar 

  31. S.C.J. Daniel, R. Damodaram, G.M. Karthik, and B.L. Rao, Friction Surfaced Alloy 718 Deposits: Effect of Process Parameters on Coating Performance, J. Mater. Eng. Perform., 2022, 31(5), p 4119-4132. https://doi.org/10.1007/s11665-021-06488-4

    Article  CAS  Google Scholar 

  32. J.J.S. Dilip and G.D.J. Ram, Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, 45(1), p 182-192.

    Article  CAS  Google Scholar 

  33. L. Sang, J. Lu, J. Wang, R. Ullah, X. Sun, Y. Zhang, and Z. Zhang, In-Situ SEM Study of Temperature-Dependent Tensile Behavior of Inconel 718 Superalloy, J. Mater. Sci., 2021, 56(28), p 16097-16112. https://doi.org/10.1007/s10853-021-06256-8

    Article  CAS  Google Scholar 

  34. H.Y. Li, Z.W. Huang, S. Bray, G. Baxter, and P. Bowen, High Temperature Fatigue of Friction Welded Joints in Dissimilar Nickel Based Superalloys, Mater. Sci. Technol., 2007, 23(12), p 1408-1418.

    Article  CAS  Google Scholar 

  35. L. Xiao, D.L. Chen, and M.C. Chaturvedi, Cyclic Deformation Mechanisms of Precipitation-Hardened Inconel 718 Superalloy, Mater. Sci. Eng. A, 2008, 483-484, p 369-372.

    Article  Google Scholar 

  36. H. Bande, Y. Xiao, P. Au, A.K. Koul, and W. Wallace, Low Cycle Fatigue Fracture Behaviour of Conventional and Damage Tolerant Microstructures of Inconel 718 at 650°C, Surf. Eng., 1990, 11(001), p 238-251.

    Article  Google Scholar 

  37. K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, and U. Ramamurty, Low Cycle Fatigue Behaviour of a Low Interstitial Ni-Base Superalloy, Acta Mater., 2009, 57(12), p 3450-3459. https://doi.org/10.1016/j.actamat.2009.03.046

    Article  CAS  Google Scholar 

  38. G.S. Rao, V.J.M. Sharma, K.T. Tharian, P.R. Narayanan, K. Sreekumar, and P.P. Sinha, Study of LCF Behavior of IN718 Superalloy at Room Temperature, Mater. Sci. Forum, 2012, 710, p 445-450.

    Article  Google Scholar 

  39. J.Z. Xie, Low Cycle Fatigue, and Fatigue Crack Growth Behaviors of Alloy IN718, Superalloys 718, 625, and Various Derivatives. Miner. Met. Mater. Soc. 491-500 (1991)

  40. D. Fournier and A. Pineau, Low Cycle Fatigue Behavior of Inconel 718 at 298 K and 823 K, Metall. Trans. A, 1977, 8(7), p 1095-1105.

    Article  Google Scholar 

  41. K.V.U. Praveen, G.V.S. Sastry, and V. Singh, Room Temperature LCF Behaviour of Superalloy in 718, Trans. Indian Inst. Met., Citeseer, 2004, 57(6), p 623-630.

  42. S.K. Hwang, H.N. Lee, and B.H. Yoon, Mechanism of Cyclic Softening and Fracture of an Ni-Base Γ′-Strengthened Alloy under Low-Cycle Fatigue, Metall. Trans. A, 1989, 20(12), p 2793-2801.

    Article  Google Scholar 

  43. M. Chang, A.K. Koul, P. Au, and T. Terada, Damage Tolerance of Wrought Alloy 718 Ni-Fe-Base Superalloy, J. Mater. Eng. Perform., 1994, 3(3), p 356-366.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Defence Research and Development Organisation for funding this program. They are also thankful to Shri. V Balamurugan, Outstanding Scientist & Director, CVRDE, for their keen interest and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Damodaram.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest, financial or otherwise, that may have influenced the findings reported in the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neminathan, P.V., Damodaram, R., Karthik, G.M. et al. Tensile and Low-Cycle Fatigue Behavior of Dissimilar Friction Welds of Alloy 718/Alloy 720Li. J. of Materi Eng and Perform 33, 3221–3236 (2024). https://doi.org/10.1007/s11665-023-08348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08348-9

Keywords

Navigation