Skip to main content

Advertisement

Log in

Investigation on the Diffusion Behaviors and Mechanical Properties of the Ti/Al Interface Using Molecular Dynamics Simulation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Many studies have been conducted on the preparation of TiAl alloy sheets through Ti foil and Al foil diffusion. Notably, the problem of Ti/Al interface diffusion needs to be solved both theoretically and experimentally. In this paper, molecular dynamics simulation was used to study the diffusion and mechanical properties of the Ti/Al interface. By analyzing the diffusion of titanium and aluminum atoms at different temperatures, the diffusion coefficient of Al atoms in Ti atoms and that of Ti atoms in Al atoms increased with increasing temperature, thus satisfying the Arrhenius formula at the system temperature. The rough interface pre-filled a portion of the pores during the heating stage, causing the pores at the interface to disappear. Therefore, the diffusion effect of the rough interface was more prominent. The values of the diffusion coefficient and the activation energy of the rough interface were not very different from those of the ideal interface. After diffusion, the tensile simulations showed that the strength was approximately 4.2 GPa. Fractures occurred mainly on the Al side during the tensile deformation process, and the ideal interface and the rough interface had different fracture modes during the tensile fracture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Mohammadnejad, A. Bahrami, and L.T. Khajavi, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites Containing Carbon Nanotubes, J. Mater. Eng. Perform., 2021, 30, p 4380–4392.

    Article  CAS  Google Scholar 

  2. G.V. Krishna Pradeep, M. Duraiselvam, and K. Sivaprasad, Tribological Behavior of Laser Surface Melted γ-TiAl Fabricated by Electron Beam Additive Manufacturing, J. Mater. Eng. Perform., 2022, 31, p 1009–1020.

    Article  Google Scholar 

  3. L. Wang, A.K. Tieu, Q. Zhu, J. Chen, J. Cheng, J. Yang, and B. Kosasih, Achieving the Excellent Self-Lubricity and Low Wear of TiAl Intermetallics Through the Addition of Copper Coated Graphite, Compos. Part. B Eng., 2020, 198, p 108223.

    Article  CAS  Google Scholar 

  4. Y. Tan, Y.L. Wang, X.G. You, H.P. Liu, and P.T. Li, Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting, J. Mater. Eng. Perform., 2021, 31, p 1387–1396.

    Article  Google Scholar 

  5. Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue, Nano-Ti5Si3 Leading to Enhancement of Oxidation Resistance, Corros. Sci., 2018, 140, p 223–230.

    Article  CAS  Google Scholar 

  6. O. Ouadah, G. Merad, and H. Si Abdelkader, Atomistic Modelling of the γ-TiAl/α2-Ti3Al Interfacial Properties Affected by Solutes, Mater. Chem. Phys., 2021, 257, p 123434.

    Article  CAS  Google Scholar 

  7. Y.L. Song, Z.H. Dou, T.A. Zhang, and G.C. Wang, Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy, J. Mater. Eng. Perform., 2021, 30, p 9315–9325.

    Article  CAS  Google Scholar 

  8. Z.L. Lu, W.L. Xu, J.W. Cao, Y.L. Xia, Q.H. Deng, and D.C. Li, Microstructures and Properties of porous TiAl-Based Intermetallics Prepared by Freeze-Casting, T. Nonferr. Metal. Soc., 2020, 30, p 328–391.

    Article  Google Scholar 

  9. M.Q. Lv, Y.Q. Fu, Z.Y. Yang, H.M. Zhang, and Z.S. Cui, A Two-Stage Constitutive Model for Ti2AlNb Alloy Based on Asymptote Approach and Temperature-Corrected Stress, J. Mater. Eng. Perform., 2021, 30, p 1957–1969.

    Article  CAS  Google Scholar 

  10. O. Ouadah, G. Merad, F. Saidi, S. Mendi, and M. Dergal, Influence of Alloying Transition Metals on Structural, Elastic, Electronic and Optical Behaviors of γ-TiAl Based Alloys: A Comparative DFT Study Combined with Data Mining Technique, Mater. Chem. Phys., 2020, 242, p 122455.

    Article  CAS  Google Scholar 

  11. K. Yang, X. Shi, Y. Huang, Z. Wang, Y. Wang, A. Zhang, and Q. Zhang, The Research on the Sliding Friction and Wear Behaviors of TiAl-10 wt.%Ag at Elevated Temperatures, Mater. Chem. Phys., 2017, 186, p 317–326.

    Article  CAS  Google Scholar 

  12. S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, and S. Weiß, Microstructure and Mechanical Properties of a Forged β-Solidifying γ-TiAl Alloy in Different Heat Treatment Conditions, Intermetallics, 2015, 58, p 71–83.

    Article  CAS  Google Scholar 

  13. Y. Zhang, X. Wang, F. Kong, L. Sun, and Y. Chen, A high-Performance β-Solidifying TiAl Alloy Sheet: Multi-Type Lamellar Microstructure and Phase Transformation, Mater. Charact., 2018, 138, p 136–144.

    Article  CAS  Google Scholar 

  14. H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki, and S. Kikuchi, Production of TiAl Sheet with Oriented Lamellar Microstructure by Diffusional Reaciton of Aluminum and Textured Titanium Foils, Mater. T. JIM., 1999, 40, p 654–658.

    Article  CAS  Google Scholar 

  15. D.J. Harach, Processing, Properties, and Ballistic Performance of Titanium-Aluminum Titanium Metal-Intermetallic Laminate (MIL) Composite, PhD Thesis, University of California, 2020

  16. J.G. Luo and L. Acoff Viola, Using Cold Roll Bonding and Annealing to Process Ti/Al Multilayer Composites from Elemental Foils, Mat. Sci. Eng. A Struct., 2004, 379, p 164–172.

    Article  Google Scholar 

  17. Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, and H.Y. Diao, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils, T. Nonferr. Metal. Soc., 2011, 21, p 1722–1727.

    Article  CAS  Google Scholar 

  18. J.C. Rawers, and H.E. Maupin, Metal-Intermetallic Composites Formed by Reaction-Sintering Metal Foils, J. Mater. Sci. Lett., 1993, 12, p 637–639.

    Article  CAS  Google Scholar 

  19. Y. Huang, L. Lin, and A. Shanker, Molecular Dynamics Simulation of Diffusion Behavior at the Interface of Hot Rolling-Diffusion Bonding of Cu/Al, Heat Treat. Technol. Equip., 2011, 32, p 55–60.

    Google Scholar 

  20. M. Shimono and H. Onodera, Molecular Dynamics Study on Formation and Crystallization of Ti-Al Amorphous Alloys, Mat. Sci. Eng. A Struct., 2001, 304–306, p 515–519.

    Article  Google Scholar 

  21. S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang, Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A., 2003, 34, p 2377–2386.

    Article  Google Scholar 

  22. T.D. Nguyen and S.J. Plimpton, Accelerating Dissipative Particle Dynamics Simulations for Soft Matter Systems, Comp. Mater. Sci., 2015, 100, p 173–180.

    Article  Google Scholar 

  23. W. Li, W. Yu, Q. Xu, J. Zhou, H. Nan, Y. Yin, X. Feng, and X. Shen, Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comp. Mater. Sci., 2020, 172, p 109361.

    Article  CAS  Google Scholar 

  24. M. Gerboth, W. Setyawan, and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comp. Mater. Sci., 2014, 85, p 269–279.

    Article  CAS  Google Scholar 

  25. R.R. Zope and Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B, 2003, 68, p 024102.

    Article  Google Scholar 

  26. Y.K. Kim, H.K. Kim, W.S. Jung, and B.J. Lee, Atomistic Modeling of the Ti-Al Binary System, Comp. Mater. Sci., 2016, 119, p 1–8.

    Article  Google Scholar 

  27. M.S. Daw and M.I. Baskes, Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B, 1984, 29, p 6443–6453.

    Article  CAS  Google Scholar 

  28. S.D. Chen, F.J. Ke, M. Zhou, and Y.L. Bai, Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al, Acta. Mater., 2007, 55, p 3169–3175.

    Article  CAS  Google Scholar 

  29. F.L. Tang, Z. Jun, H.W. Bao et al., MolecuIar Dynamic Simulation of Diffusive Bonding Between Ti-Al and Welded Joint Tensile Performance, J. Lanzhou Univ. Technol., 2015, 41, p 1–6.

    Google Scholar 

  30. A.S. Zuruzi, H. Li, and G. Dong, Effects of Surface Roughness on the Diffusion Bonding of Al Alloy 6061 in Air, Mat. Sci. Eng. A Struct., 1999, 270, p 244–248.

    Article  Google Scholar 

  31. G. Ciccotti, M. Guillopé, and V. Pontikis, High-Angle Grain-Boundary Premelting Transition: A Molecular-Dynamics Study, Phys. Rev. B, 1983, 27, p 5576–5558.

    Article  CAS  Google Scholar 

  32. A.H. Assari and B. Eghbali, Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers, J. Alloy. Compd., 2019, 773, p 50–58.

    Article  CAS  Google Scholar 

  33. A. Mao, J. Zhang, S. Yao, A. Wang, W. Wang, Y. Li, C. Qiao, J. Xie, and Y. Jia, The Diffusion Behaviors at the Cu-Al Solid-Liquid Interface: A Molecular Dynamics Study, Results Phys., 2020, 16, p 102998.

    Article  Google Scholar 

  34. D. Raabe, Computational Materials Science, Chemical Industry Press, Beijing, 2002.

    Google Scholar 

  35. P.G. Shewmion, Diffusion in Solids, McGraw-Hill, New York, 1963.

    Google Scholar 

  36. P. Li, L.S. Wang, S.L. Yan, M. Meng, and K.M. Xue, Temperature Effect on the Diffusion Welding Process and Mechanism of B2-O Interface in the Ti2AlNb-Based Alloy: A Molecular Dynamics Simulation, Vacuum, 2020, 173, p 109118.

    Article  CAS  Google Scholar 

  37. S.G. Wang, C.X. Liu, and Z.Y. Jian, Molecular Dynamics Simulation of Diffusion Coefficient of Al-Cu Alloy, J. Xi’an Technol. Univ., 2018, 38, p 559–564.

    Google Scholar 

  38. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sc., 2010, 18, p 2154–2162.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51871012), the Beijing Natural Science Foundation (No. 2162024), Fundamental Research Funds for the Central Universities (No. FRF-GF-19-023B) and the National Program on Key Basic Research Project (973 Program) (No. 2011CB605502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiqi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, L. Investigation on the Diffusion Behaviors and Mechanical Properties of the Ti/Al Interface Using Molecular Dynamics Simulation. J. of Materi Eng and Perform 33, 2920–2939 (2024). https://doi.org/10.1007/s11665-023-08173-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08173-0

Keywords

Navigation