Skip to main content
Log in

Study of Structure and Deformation Pathways in Ti-7Al Using Atomistic Simulations, Experiments, and Characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-7Al is a good model material for mimicking the α phase response of near-α and α+β phases of many widely used titanium-based engineering alloys, including Ti-6Al-4V. In this study, three model structures of Ti-7Al are investigated using atomistic simulations by varying the Ti and Al atom positions within the crystalline lattice. These atomic arrangements are based on transmission electron microscopy observations of short-range order. The elastic constants of the three model structures considered are calculated using molecular dynamics simulations. Resonant ultrasound spectroscopy experiments are conducted to obtain the elastic constants at room temperature and a good agreement is found between the simulation and experimental results, providing confidence that the model structures are reasonable. Additionally, energy barriers for crystalline slip are established for these structures by means of calculating the γ-surfaces for different slip systems. Finally, the positions of Al atoms in regards to solid solution strengthening are studied using density functional theory simulations, which demonstrate a higher energy barrier for slip when the Al solute atom is closer to (or at) the fault plane. These results provide quantitative insights into the deformation mechanisms of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.J. Donachie: Titanium: A Technical Guide, vol. 2, 2nd ed., ASM international, Materials Park, 2000.

  2. RR Boyer. Attributes, characteristics, and applications of titanium and its alloys. JOM, vol. 62 (5):21–24, 2010.

    Article  Google Scholar 

  3. T Seshacharyulu, SC Medeiros, WG Frazier, and YVRK Prasad. Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater. Sci. Eng. A, vol. 325 (1):112–125, 2002.

    Article  Google Scholar 

  4. E Wielewski, DB Menasche, PG Callahan, and RM Suter. Three-dimensional α colony characterization and prior-\(\beta \) grain reconstruction of a lamellar Ti–6Al–4V specimen using near-field high-energy x-ray diffraction microscopy. J. Appl. Crystallogr., vol. 48 (4):1165–1171, 2015.

    Article  Google Scholar 

  5. WJ Evans and MR Bache. Hydrogen and fatigue behaviour in a near alpha titanium alloy. Scr. Metall. Mater., vol. 32 (7):1019–1024, 1995.

    Article  Google Scholar 

  6. MC Brandes, MJ Mills, and JC Williams. The influence of slip character on the creep and fatigue fracture of an α Ti-Al alloy. Metall. Mater. Trans. A, vol. 41 (13):3463–3472, 2010.

    Article  Google Scholar 

  7. U Lienert, MC Brandes, JV Bernier, J Weiss, SD Shastri, MJ Mills, and MP Miller. In situ single-grain peak profile measurements on Ti–7Al during tensile deformation. Mater. Sci. Eng. A, vol. 524 (1):46–54, 2009.

    Article  Google Scholar 

  8. K Chatterjee, A Venkataraman, T Garbaciak, J Rotella, MD Sangid, AJ Beaudoin, P Kenesei, JS Park, and AL Pilchak. Study of grain-level deformation and residual stresses in ti-7al under combined bending and tension using high energy diffraction microscopy (hedm). Int. J. Solids Struct., vol. 94-95:35–49, 2016.

    Article  Google Scholar 

  9. Jay C Schuren, Paul A Shade, Joel V Bernier, Shiu Fai Li, Basil Blank, Jonathan Lind, Peter Kenesei, Ulrich Lienert, Robert M Suter, Todd J Turner, et al. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci., vol. 19 (4):235–244, 2015.

    Article  Google Scholar 

  10. J Kwon, MC Brandes, P Sudharshan Phani, AL Pilchak, YF Gao, Easo P George, George M Pharr, and MJ Mills. Characterization of deformation anisotropies in an α-Ti alloy by nanoindentation and electron microscopy. Acta Mater., vol. 61 (13):4743–4756, 2013.

    Article  Google Scholar 

  11. Paul A Shade, Basil Blank, Jay C Schuren, Todd J Turner, Peter Kenesei, Kurt Goetze, Robert M Suter, Joel V Bernier, Shiu Fai Li, Jonathan Lind, et al. A rotational and axial motion system load frame insert for in situ high energy x-ray studies. Rev. Sci. Instrum., vol. 86 (9):093902, 2015.

    Article  Google Scholar 

  12. Adam L.: Scr. Mater., vol. 68 (5):277–280, 2013.

    Article  Google Scholar 

  13. U Lienert, SF Li, CM Hefferan, J Lind, RM Suter, JV Bernier, NR Barton, MC Brandes, MJ Mills, MP Miller, et al. High-energy diffraction microscopy at the advanced photon source. JOM, vol. 63 (7):70–77, 2011.

    Article  Google Scholar 

  14. A Radecka, PAJ Bagot, TL Martin, J Coakley, VA Vorontsov, MP Moody, H Ishii, D Rugg, and D Dye. The formation of ordered clusters in Ti–7Al and Ti–6Al–4V. Acta Mater., vol. 112:141–149, 2016.

    Article  Google Scholar 

  15. B. Matt: PhD thesis, Ohio State University, 2008.

  16. N.S. Thirumalai: PhD thesis, Ohio State University, 2000.

  17. A Van de Walle and M Asta. First-principles investigation of perfect and diffuse antiphase boundaries in HCP-based Ti-al alloys. Metall. Mater. Trans. A, vol. 33 (13):735–741, 2002.

    Article  Google Scholar 

  18. William B . A Handbook of Lattice Spacings and Structures of Metals and Alloys, 1st edn, Pergamon Press, London, 1958.

    Google Scholar 

  19. G. Lütjering, J.C. Williams: Titanium, vol. 2, 2nd edn, Springer, Berlin, 2003.

    Book  Google Scholar 

  20. Magali Benoit, Nathalie Tarrat, and Joseph Morillo. Modell. Simul. Mater. Sci. Eng., vol. 21 (1):015009, 2013.

    Article  Google Scholar 

  21. M Ghazisaeidi and DR Trinkle. Acta Mater., vol. 60 (3):1287–1292, 2012.

    Article  Google Scholar 

  22. Joseph A Yasi, Louis G Hector, and Dallas R Trinkle. Acta Mater., vol. 60 (5):2350–2358, 2012.

    Article  Google Scholar 

  23. MF Savage, J Tatalovich, M Zupan, KJ Hemker, and MJ Mills. Mater. Sci. Eng. A, vol. 319:398–403, 2001.

    Article  Google Scholar 

  24. MH Yoo, SR Agnew, JR Morris, and KM Ho. Mater. Sci. Eng. A, vol. 319:87–92, 2001.

    Article  Google Scholar 

  25. MH Yoo. Metall. Trans. A, vol. 12 (3):409–418, 1981.

    Article  Google Scholar 

  26. A Akhtar. Metall. Trans. A, vol. 6 (5):1105–1113, 1975.

    Article  Google Scholar 

  27. JC Williams, RG Baggerly, and NE Paton. Deformation behavior of hcp Ti-Al alloy single crystals. Metall. Mater. Trans. A, vol. 33 (13):837–850, 2002.

    Article  Google Scholar 

  28. TR Cass. The science, technology and application of titanium. Pergamon Press, London, 1st edition, 1970.

    Google Scholar 

  29. MJ Blackburn and JC Williams. Trans. TMS-AIME, vol. 239 (2):287–288, 1967.

    Google Scholar 

  30. H Conrad. Scr. Metall., vol. 7 (5):509–512, 1973.

    Article  Google Scholar 

  31. GA Sargent and H Conrad. Scr. Metall., vol. 4 (2):129–133, 1970.

    Article  Google Scholar 

  32. HW Rosenberg and WD Nix. Metall. Trans., vol. 4 (5):1333–1338, 1973.

    Article  Google Scholar 

  33. MJ Blackburn and JC Williams. Trans. Metall. Soc. AIME, vol. 62:398–208, 1969.

    Google Scholar 

  34. T Sakai and ME Fine. Acta Metall., vol. 22 (11):1359–1372, 1974.

    Article  Google Scholar 

  35. A Urakami, M Meshii, and ME Fine. Acta Metall., 18 (1):87–99, 1970.

    Article  Google Scholar 

  36. A Girshick, DG Pettifor, and V Vitek. Philos. Mag. A, vol. 77 (4):999–1012, 1998.

    Article  Google Scholar 

  37. V Vitek. Philos. Mag., vol. 18 (154):773–786, 1968.

    Article  Google Scholar 

  38. J. R. Rice. J. Mech. Phys. Solids, vol. 40 (2):239–271, 1992.

    Article  Google Scholar 

  39. H. Van Swygenhoven, P. M. Derlet, and A. G. Froseth. Nat. Mater., vol. 3 (6):399–403, 2004.

    Article  Google Scholar 

  40. D.J. Siegel: Appl. Phys. Lett., vol. 87 (12), 2005.

    Article  Google Scholar 

  41. Binglun Yin, Zhaoxuan Wu, and WA Curtin. Acta Mater., 123:223–234, 2017.

    Article  Google Scholar 

  42. S. Plimpton. J. Comput. Phys., vol. 117 (1):1–19, 1995.

    Article  Google Scholar 

  43. R. R. Zope and Y. Mishin. Phys. Rev. B, vol. 68 (2):024102, 2003.

    Article  Google Scholar 

  44. Aidan P Thompson, Steven J Plimpton, and William Mattson. J. Chem. Phys., vol. 131 (15):154107, 2009.

    Article  Google Scholar 

  45. W. Cai, J. Li, and S. Yip: Comprehensive Nuclear Materials, 1st ed., Elsevier, Amsterdam, 2012.

  46. D Srolovitz, V Vitek, and T Egami. Acta Metall., vol. 31 (2):335–352, 1983.

    Article  Google Scholar 

  47. S Kibey, JB Liu, MJ Curtis, DD Johnson, and H Sehitoglu. Acta Mater., vol. 54 (11):2991–3001, 2006.

    Article  Google Scholar 

  48. Charles Fox. An introduction to the calculus of variations. Courier Dover Publications, New York, 1st edition, 1950.

    Google Scholar 

  49. Robert G Leisure and FA Willis. J. Phys., vol. 9 (28):6001, 1997.

    Google Scholar 

  50. William M Visscher, Albert Migliori, Thomas M Bell, and Robert A Reinert. J. Acoust. Soc. Am., vol. 90 (4):2154–2162, 1991.

    Article  Google Scholar 

  51. Albert Migliori and JD Maynard. Rev. Sci. Instrum., vol. 76 (12):121301, 2005.

    Article  Google Scholar 

  52. R.A. Adebisi, T.J. Lesthaeghe, P.A. Shade, M.R. Cherry, S. Sathish, and J.C. Aldrin: Unpublished research, Air Force Research Laboratory, Wright-Patterson AFB, OH, 2016.

  53. G. Kresse and J. Furthmuller. Phys. Rev. B, vol. 54 (16):11169–11186, 1996.

    Article  Google Scholar 

  54. P. E. Blochl. Phys. Rev. B, vol. 50 (24):17953–17979, 1994.

    Article  Google Scholar 

  55. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., vol. 77 (18):3865–3868, 1996.

    Article  Google Scholar 

  56. H. J. Monkhorst and J. D. Pack. Phys. Rev. B, vol. 13 (12):5188–5192, 1976.

    Article  Google Scholar 

  57. MPAT Methfessel and AT Paxton. Phys. Rev. B, vol. 40 (6):3616, 1989.

    Article  Google Scholar 

  58. S.A. Kibey: PhD thesis, University of Illinois Urbana-Champaign, 2007.

  59. J.-Y. Kim. AIP Conf. Proc., vol. 615:1118–1125, 2002.

    Article  Google Scholar 

  60. Gang Lu, Nicholas Kioussis, Vasily V Bulatov, and Efthimios Kaxiras. Dislocation core properties of aluminum: a first-principles study. Mater. Sci. Eng. A, vol. 309:142–147, 2001.

    Google Scholar 

  61. V Vitek and M Igarashi. Philos. Mag. A, vol. 63 (5):1059–1075, 1991.

    Article  Google Scholar 

  62. Yizhe Tang and Jaafar A El-Awady. Acta Mater., vol. 71:319–332, 2014.

    Article  Google Scholar 

  63. T Nogaret, WA Curtin, JA Yasi, LG Hector, and DR Trinkle. Acta Mater., vol. 58 (13):4332–4343, 2010.

    Article  Google Scholar 

  64. N Zhou, DC Lv, HL Zhang, D McAllister, F Zhang, MJ Mills, and Y Wang. Acta Mater., 65:270–286, 2014.

    Article  Google Scholar 

  65. Ahmad Shahba and Somnath Ghosh. Int. J. Plast., 87:48–68, 2016.

    Article  Google Scholar 

  66. E. S. Fisher and C. J. Renken. Phys. Rev., vol. 135:A482–A494, 1964.

    Article  Google Scholar 

  67. C.L. Fu, J. Zou, and M.H. Yoo. Scr. Metall. Mater., vol. 33 (6):885 – 891, 1995.

    Article  Google Scholar 

Download references

Acknowledgments

MDS and AV gratefully acknowledge the support from the Air Force Office of Scientific Research under Contract No. FA9550-14-1-0284. Further, we thank Professor Duane Johnson (Ames Laboratory) for interesting and stimulating conversations. PAS and ALP acknowledge the support from the U.S. Air Force Research Laboratory and the Air Force Office of Scientific Research (program managers David Stargel, James Fillerup, and Ali Sayir).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Sangid.

Additional information

Manuscript submitted August 3, 2016.

Appendix

Appendix

For completeness of this study, the γ-surfaces for Ti and \(\mathrm {Ti_3Al}\) were calculated using the same EAM potential (Figures A1 and A2). The procedure for these calculations is described in the Methods section. Our results are in agreement with those reported in literature.[20,43] Also included are minimum energy paths (MEPs) on the pyramidal plane for Ti and \(\mathrm {Ti_3Al}\) (Figure A3).

Fig. A1
figure 15

γ-surface plots for pure Ti on the (a) basal, (b) prismatic, and (c) first-order pyramidal slip planes

Fig. A2
figure 16

γ-surface plots for \(\mathrm {Ti_3Al}\) on the (a) basal, (b) prismatic, and (c) first-order pyramidal slip planes

Fig. A3
figure 17

Minimum energy paths (MEP) for \(\langle \) c+a \(\rangle \) slip on the pyramidal plane for Ti and \(\mathrm {Ti_3Al}\), where (a) and (c) show the γ-surface plots and (b) and (d) show the plot of fault energy along the MEP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraman, A., Shade, P.A., Adebisi, R. et al. Study of Structure and Deformation Pathways in Ti-7Al Using Atomistic Simulations, Experiments, and Characterization. Metall Mater Trans A 48, 2222–2236 (2017). https://doi.org/10.1007/s11661-017-4024-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4024-y

Keywords

Navigation