Skip to main content
Log in

Structural transformation of Ti-based alloys during tensile and compressive loading: An insight from molecular dynamics simulations

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, we investigated the structural alterations that occur when Ti-based alloys, namely, Tix%Al(100-x)% and Tix%Ni(100-x)%, are subjected to compressive and tensile loading using molecular dynamics simulations. It is found that the Tix%Al(100-x)% and Tix%Ni(100-x)% alloys containing equal ratios (50:50) of the atoms have a higher mechanical strength than those with different atomic compositions. Furthermore, the tensile and compressive stress patterns in the stress–strain curves are correlated with these structural changes. The development of a face-centered cubic (FCC)-like structure in Tix%Al(100-x)% and Tix%Ni(100-x)% alloys is generally associated with an improvement in the tensile strength of the material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Yang, S. Abanteriba, A. Becker, AIP Adv. 10, 060701 (2020)

    Article  CAS  Google Scholar 

  2. M.S. Cabrera, C.W.J. Oomens, F.P.T. Baaijens, J. Mech. Behav. Biomed. Mater. 68, 252 (2017)

    Article  Google Scholar 

  3. G. Costanza, M.E. Tata, Materials 13, 1856 (2020)

    Article  CAS  Google Scholar 

  4. R. Arifin, Y. Winardi, Y.A. Wicaksono, L. Poriwikawa, Darminto, A. Selamat, W.T. Putra, M. Malyadi, Can. Metall. Q. 61, 359 (2022)

    Article  CAS  Google Scholar 

  5. R. Arifin, A. Selamat, R. Asih, Darminto, W.T. Putra, M. Malyadi, Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. (2022). https://doi.org/10.1177/23977914221114557

    Article  Google Scholar 

  6. I. McCue, C. Peitsch, T. Montalbano, A. Lennon, J. Sopcisak, M.M. Trexler, S. Storck, MRS Commun. 9, 1214 (2019)

    Article  CAS  Google Scholar 

  7. T.C. Dzogbewu, Manuf. Rev 7, 35 (2020)

    CAS  Google Scholar 

  8. K. Takahashi, K. Mori, H. Takebe, MATEC Web Conf. 321, 02003 (2020)

    Article  CAS  Google Scholar 

  9. D. Wei, F. Li, S. Li, S. Wang, F. Ding, H. Liang, Y. Yan, P. Zhang, J. Mater. Res. 35, 516 (2020)

    Article  CAS  Google Scholar 

  10. H.N. Wu, D.S. Xu, H. Wang, R. Yang, J. Mater. Sci. Technol. 32, 1033 (2015)

    Article  Google Scholar 

  11. J.-H. Wang, Y. Lu, X.-L. Zhang, X. Shao, Intermetallics 101, 1 (2018)

    Article  CAS  Google Scholar 

  12. X.-X. Jin, Z.-A. Tian, W.-Y. Hu, MRS Commun. 12, 45 (2022)

    Article  CAS  Google Scholar 

  13. A. Kale, S. Seal, N. Sobczak, J. Morgiel, K.B. Sundaram, Surf. Coat. Technol. 141, 252 (2001)

    Article  CAS  Google Scholar 

  14. M. Miki, T. Yamasaki, Y. Ogino, Mater. Trans. 34, 952 (1993)

    Article  CAS  Google Scholar 

  15. S. Mathur, R. Vyas, K. Sachdev, S.K. Sharma, Radiat. Eff. Defects Solids. 166, 749 (2011)

    Article  CAS  Google Scholar 

  16. K. Dehghani, A.A. Khamei, Mater. Sci. Eng. A. 527, 684 (2010)

    Article  Google Scholar 

  17. J. Eckert, L. Schultz, K. Urban, J. Non-Cryst, Solids. 127, 90 (1991)

    CAS  Google Scholar 

  18. S. Belyaev, N. Resnina, E. Iaparova, A. Ivanova, T. Rakhimov, V. Andreev, J. Alloys Compd. 787, 1365 (2019)

    Article  CAS  Google Scholar 

  19. S. Sanjabi, Z.H. Barber, Surf. Coat. Technol. 204, 1299 (2010)

    Article  CAS  Google Scholar 

  20. Y. Oshida, T. Tominaga, Biomed Appl (De Gruyter, Germany, 2020), pp.12–70

    Google Scholar 

  21. Aidan P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022)

    Article  CAS  Google Scholar 

  22. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee, Comput. Mater. Sci. 139, 225 (2017)

    Article  CAS  Google Scholar 

  23. B. Jeong, J. Kim, T. Lee, S.-W. Kim, S. Ryu, Sci. Rep. 8, 15200 (2018)

    Article  Google Scholar 

  24. W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, 4th edn. (Pergamon Press, New York, 1958)

    Google Scholar 

  25. S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, IYu. Khmelevskaya, I.B. Trubitsyna, Acta Mater. 52, 4479 (2004)

    Article  CAS  Google Scholar 

  26. P. Hirel, Comput. Phys. Commun. 197, 212 (2015)

    Article  CAS  Google Scholar 

  27. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  28. P.M. Larsen, S. Schmidt, J. Schiøtz, Model. Simul. Mater. Sci. Eng. 24, 055007 (2016)

    Article  Google Scholar 

  29. P.M. Piaggi, M. Parrinello, J. Chem. Phys. 147, 114112 (2017)

    Article  Google Scholar 

  30. K. Tanaka, T. Ichitsubo, H. Inui, M. Yamaguchi, M. Koiwa, Philos. Mag. Lett. 73, 71 (1966)

    Article  Google Scholar 

  31. R. Arifin, F. Astuti, M.A. Baqiya, Y. Winardi, Y.A. Wicaksono, Darminto, A. Selamat, Metals. 11, 1760 (2021)

    Article  CAS  Google Scholar 

  32. P. Šittner, L. Heller, J. Pilch, C. Curfs, T. Alonso, D. Favier, J. Mater. Eng. Perform. 23, 2303 (2014)

    Article  Google Scholar 

  33. X. Huang, J. Nohava, B. Zhang, A.G. Ramirez, Int. J. Smart Nano Mater. 2, 39 (2011)

    Article  CAS  Google Scholar 

  34. Z. Li, D. Raabe, J. Miner. Met. Mater. Soc. 69, 2099 (2017)

    Article  CAS  Google Scholar 

  35. F.M. Nor, H.Y. Lee, J.Y. Lim, D. Kurniawan, E-Polym. 16, 217 (2016)

    Article  CAS  Google Scholar 

  36. M. Greger, M. Widomská, L. Kander, J. Achiev. Mater. Manuf. Eng. 40, 33 (2010)

    Google Scholar 

  37. X. Chen, W. Chen, Y. Ma, Y. Zhao, C. Deng, X. Peng, T. Fu, Mech. Mater. 145, 103402 (2020)

    Article  Google Scholar 

  38. B.T. Wang, J.L. Shao, G.C. Zhang, W.D. Li, P. Zhang, J. Phys. Condens. Matter. 22, 435404 (2010)

    Article  CAS  Google Scholar 

  39. G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond, Acta Mater. 52, 821 (2004)

    Article  CAS  Google Scholar 

  40. H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tomé, Z. Zhang, S.X. Mao, Sci. Rep. 6, 24370 (2016)

    Article  CAS  Google Scholar 

  41. B. Yan, S. Jiang, D. Sun, M. Wang, J. Yu, Y. Zhang, Mater. Charact. 178, 111273 (2021)

    Article  CAS  Google Scholar 

  42. M. D. K. Dewa, S. Wiryolukito, H. Suwarno, 2nd Int. Conf. Sustain. Energy Eng. Appl. ICSEEA 2014 Sustain. Energy Green Mobil. 68, 318 (2015)

  43. E. Tal-Gutelmacher, D. Eliezer, JOM 57, 46 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for the preparation of the manuscript was provided by a World Class Professor Program 2022 from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia in collaboration with the LPDP, Ministry of Finance, Republic of Indonesia.

Funding

The study was supported by Direktorat Jenderal Pendidikan Tinggi, Kementerian Keuangan Republik Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizal Arifin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2494 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifin, R., Setiawan, D.R.P., Triawan, D. et al. Structural transformation of Ti-based alloys during tensile and compressive loading: An insight from molecular dynamics simulations. MRS Communications 13, 225–232 (2023). https://doi.org/10.1557/s43579-023-00333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00333-6

Keywords

Navigation