Skip to main content
Log in

Evaluation of the Effects of SiCp on Hot Deformation Behavior and Microstructure of AZ61 Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The AZ61 magnesium alloys are widely used in the automobile industry for load-bearing component applications due to their high strength-to-weight ratio. In this study, the effects of the incorporation of silicon carbide (SiCp) particles on the microstructure and hot deformation behavior of an AZ61 alloy fabricated by the stir casting process were studied. Investigation of the fabricated composite was carried out using the hot compression process under different deformation conditions (temperatures (280, 320, 360, 400, and 440 °C) and strain rates (0.001, 0.01, 0.1, and 1 s−1)). A constitutive equation was developed using the flow stress at a strain rate of 1.2. The results indicate that the predominant mechanism affecting the AZ61 alloy was dynamic recrystallization (DRX) arising from the dislocation climb. The microstructure of the AZ61/SiCp composite could be controlled by the process of DRX through particle stimulated nucleation due to the dislocation climb. Processing maps were developed to determine the workability parameters of the fabricated materials by examining the power dissipation efficiency and instability parameters. The processing maps revealed the workability domain to occur at a temperature of 440 °C and a strain rate of 0.001 s−1 for both the alloy and the composite. However, the AZ61/SiCp composites showed the maximum power dissipation efficiency (39%) and no instability region compared with the AZ61 alloy (38%). Therefore, the AZ61/SiCp composite has much better workability than the AZ61 alloy. There is good agreement between the typical microstructure, as illustrated by the processing map, and the findings of the microstructure measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. X. Zhou, R.R. Liu, H.T. Zhou, and W.X. Jiang, A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 2423–2429.

    Article  CAS  Google Scholar 

  2. J.W. Cha, S.C. Jin, J.G. Jung, and S.H. Park, Effects of Homogenization Temperature on Microstructure and Mechanical Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy, J. Magnes. Alloys, 2022, 10, p 2833–2846.

    Article  CAS  Google Scholar 

  3. S.K. Sahoo and S.K. Panigrahi, Comparative Study on High Temperature Deformation Behavior and Processing Maps of Mg-4Zn-1RE-0.5Zr Alloy With and Without In-situ Sub-Micron Sized TiB2 Reinforcement, J. Magnes. Alloys, 2022, 10, p 3520–3541.

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Guan, J. Zhai, and J. Lin, Hot Deformation Behavior of LA43M Mg-Li Alloy Via Hot Compression Tests, J. Mater. Eng. Perform., 2019, 28, p 7768–7781.

    Article  CAS  Google Scholar 

  5. Q. Yang, B. Jiang, B. Song, Z. Yu, D. He, Y. Chai, J. Zhang, and F.D. Pan, The Effects of Orientation Control Via Tension-Compression on Microstructural Evolution and Mechanical Behavior of AZ31 Mg Alloy Sheet, J. Magnes. Alloys, 2022, 10, p 411–422.

    Article  CAS  Google Scholar 

  6. X. Chen, Q. Liao, Y. Niu, Y. Jia, Q. Le, S. Ning, C. Hu, K. Hu, and F. Yu, Comparison Study of Hot Deformation Behavior and Processing Map of AZ80 Magnesium Alloy Casted With and Without Ultrasonic Vibration, J. Alloys Compd., 2019, 803, p 585–596.

    Article  CAS  Google Scholar 

  7. K. KunDeng, J. Chao Li, F. Jun Xu, K. BoNie, and W, Liang, Hot Deformation Behavior and Processing Maps of Fine-Grained SiCp/AZ91 Composite, Mater. Des., 2015, 67, p 72–81.

    Article  Google Scholar 

  8. M. Subramani, Y.C. Tzeng, L.W. Tseng, Y.K. Tsai, G.S. Chen, C.Y. Chung, and S.J. Huang, Hot Deformation Behavior and Processing Map of AZ61/SiC Composites, Mater. Today Commun., 2021, 29, p 102861.

    Article  CAS  Google Scholar 

  9. T. Wang, K.B. Nie, K.K. Deng, and W. Liang, Analysis of Hot Deformation Behavior and Microstructure Evolution of As-cast SiC Nanoparticles Reinforced Magnesium Matrix Composite, J. Mater. Res., 2016, 31, p 3437–3447.

    Article  ADS  CAS  Google Scholar 

  10. Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, W. Ji, and H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, J. Mater. Sci. Technol., 2017, 33, p 637–644.

    Article  CAS  Google Scholar 

  11. X. Ding, F. Zhao, Y. Shuang, L. Ma, Z. Chu, and C. Zhao, Characterization Of Hot Deformation Behavior of As-extruded AZ31 Alloy Through Kinetic Analysis and Processing Maps, J. Mater. Process. Technol., 2020, 276, p 116325.

    Article  CAS  Google Scholar 

  12. Y. Xu, L. Hu, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-cast AZ61 Magnesium Alloy, Mater. Sci. Eng. A., 2013, 559, p 528–533.

    Article  CAS  Google Scholar 

  13. X. Shang, J. Zhou, X. Wang, and Y. Luo, Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J. Alloys Compd., 2015, 629, p 155–161.

    Article  CAS  Google Scholar 

  14. A. Hadadzadeh and M.A. Wells, Analysis of the Hot Deformation of ZK60 Magnesium Alloy, J. Magnes. Alloys, 2017, 5(4), p 369–387.

    Article  CAS  Google Scholar 

  15. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map Mater, Des., 2014, 64, p 177–184.

    CAS  Google Scholar 

  16. L. Zhang, Q. Wang, G. Liu, W. Guo, H. Jiang, and W. Ding, Effect of SiC Particles and the Particulate Size on the Hot Deformation and Processing Map of AZ91 Magnesium Matrix Composites, Mater. Sci. Eng. A, 2017, 707, p 315–324.

    Article  CAS  Google Scholar 

  17. Z. Su, C. Sun, M. Wang, L. Qian, and X. Li, Modeling of Microstructure Evolution of AZ80 Magnesium Alloy During Hot Working Process Using a Unified Internal State Variable Method, J. Magnes. Alloys, 2022, 10(1), p 281–294.

    Article  CAS  Google Scholar 

  18. W. Bao, L. Bao, D. Liu, D. Qu, Z. Kong, M. Peng, and Y. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy Under Hot Compression, J. Mater. Eng. Perform., 2020, 29(1), p 607–619.

    Article  CAS  Google Scholar 

  19. M. Bambach, I. Sizova, J. Szyndler, J. Bennett, G. Hyatt, J. Cao, T. Papke, and M. Merklein, On the Hot Deformation Behavior of Ti-6Al-4V Made by Additive Manufacturing, J. Mater. Process. Technol., 2021, 288, p 116840.

    Article  CAS  Google Scholar 

  20. Y.M. Cui, W.W. Zheng, C.H. Li, G.H. Cao, and Y.D. Wang, Effectiveness of Hot Deformation and Subsequent Annealing for β Grain Refinement of Ti-5Al-5Mo-5V-1Cr-1Fe Titanium Alloy, Rare Met., 2021, 40, p 3608–3615.

    Article  CAS  Google Scholar 

  21. Y. Sun, L. Bao, and Y. Duan, Hot Compressive Deformation Behaviour and Constitutive Equations of Mg-Pb-Al-1B-0.4Sc Alloy, Philos. Mag., 2021, 101, p 2355–2376.

    Article  ADS  CAS  Google Scholar 

  22. C. Zener and J.H. Hollomon, Effect of Strain-Rate Upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32.

    Article  ADS  Google Scholar 

  23. S.J. Huang, M. Subramani, A.N. Ali, D.B. Alemayehu, J.N. Aoh, and P.C. Lin, The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites, Int. J. Met., 2021, 15, p 780–793.

    CAS  Google Scholar 

  24. D. Wang, Q. Zhu, Z. Wei, B. Lin, Y. Jing, Y. Shi, R.D.K. Misra, and J. Li, Hot Deformation Behaviors of AZ91 Magnesium Alloy: Constitutive Equation, ANN-Based Prediction, Processing Map and Microstructure Evolution, J. Alloys Compd., 2022, 908, p 164580.

    Article  CAS  Google Scholar 

  25. J.Q. Li, J. Liu, and Z.S. Cui, Hot Deformation Stability of Extruded AZ61 Magnesium Alloy Using Different Instability Criteria, Acta Metall. Sin. Engl. Lett., 2015, 28, p 1364–1372.

    Article  CAS  Google Scholar 

  26. J.S. Zhang, High Temperature Deformation and Fracture of Materials. (Elsevier, 2010)

  27. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136.

    Article  CAS  Google Scholar 

  28. J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56.

    Article  CAS  Google Scholar 

  29. Y. Duan, P. Li, L. Ma, and R. Li, Dynamic Recrystallization and Processing Map of Pb-30Mg-9Al-1B Alloy During Hot Compression, Metall. Mater. Trans. A, 2017, 48, p 3419–3431.

    Article  CAS  Google Scholar 

  30. Y. Duan, L. Ma, H. Qi, and R. Li, Ping Li, Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5B Alloy, Mater Charact., 2017, 129, p 353–366.

    Article  CAS  Google Scholar 

  31. R.Y. Li, Y.H. Duan, L.S. Ma, and S. Chen, Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy, J. Mater. Eng. Perform., 2017, 26, p 2439–2451.

    Article  CAS  Google Scholar 

  32. M. Zhou, X. Liu, H. Yue, S. Liu, L. Ren, Y. Xin, L. Lyu, Y. Zhao, G. Quan, and M. Gupta, Hot Deformation Behavior and Processing Maps of Hybrid SiC and CNTs Reinforced AZ61 Alloy Composite, J. Alloys Compd., 2021, 868, p 159098.

    Article  CAS  Google Scholar 

  33. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, Dynamic Recrystallization in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 456, p 52–57.

    Article  Google Scholar 

  34. J. Ren, R. Wang, Y. Feng, C. Peng, and Z. Cai, Hot Deformation Behavior and Microstructural Evolution of As-quenched 7055 Al Alloy Fabricated by Powder Hot Extrusion, Mater. Charact., 2019, 156, p 109833.

    Article  CAS  Google Scholar 

  35. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15, p 1883–1892.

    Article  ADS  Google Scholar 

  36. X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, and M.Y. Zheng, Dynamic Recrystallization Behavior of Particle Reinforced Mg Matrix Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, 2012, 545, p 38–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Ministry of Science and Technology in Taiwan (grant number MOST 110-2221-E-606-003). This work was also supported by NCSIST-629-V101(112). The authors thank to Ms. Yin-Mei Chang of Instrumentation Center at National Tsing Hua University for the assistance in Cs-corrected STEM experiments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chih Tzeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, YC., Yi-Chiuan, H. Evaluation of the Effects of SiCp on Hot Deformation Behavior and Microstructure of AZ61 Magnesium Alloy. J. of Materi Eng and Perform 33, 1919–1930 (2024). https://doi.org/10.1007/s11665-023-08098-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08098-8

Keywords

Navigation