Skip to main content
Log in

Ultrasonic-Assisted Fracture Appearance of Titanium

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 10 April 2023

This article has been updated

Abstract

Ultrasonic vibration has considerable influence on the plastic deformation and resulting fracture responses of metallic alloys. This manuscript critically aims at quantification and assessment of two-dimensional ductile dimple geometry of Ti-6Al-4V alloy generated through the variation of ultrasonic vibration with different powers during tensile experiments. The analyzed dimple geometry statistics as a function of ultrasonic power are completely based on a published article. The alteration of microstructural states, leading to different dimple appearances after inducing different ultrasonic vibrations during tensile deformation, have been extensively quantified/assessed, compared and interpreted with respective mechanical responses of the alloy as a function of ultrasonic power. Moreover, the change in strain hardening path patterns through the variation of ultrasonic power has clearly reflected on the dimple statistics/dimensions on their respective tensile fractographs. This novel ‘dimple geometry-ultrasonic power-tensile response’ interpretation allows the use of two-dimensional ductile dimple fracture appearances in a quantitative way. The remarkable manifestation of ultrasonic vibration on tensile responses of Ti-6Al-4V alloy and hence the change in fracture appearances have been convincingly revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data consist of experimental and analytical outputs that have been plotted in the figures in the manuscript. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. P. Snopiaski, T. Donia, T. Taaski, K. Matus, B. Hadzima, and R. Bastovansky, Ultrasound Effect on the Microstructure and Hardness of AlMg3 Alloy under Upsetting, Materials, 2021, 14(4), p 1010.

    Article  ADS  Google Scholar 

  2. S. Ghafoor, Y. Li, G. Zhao, J. Li, I. Ullah, and F. Li, Deformation Characteristics and Formability Enhancement during Ultrasonic-Assisted Multi-Stage Incremental Sheet Forming, J. Mater. Res. Technol., 2022, 18, p 1038–1054.

    Article  Google Scholar 

  3. Y. Bai and M. Yang, Optimization of Metal Foils Surface Finishing using Vibration-Assisted Micro-Forging, J. Mater. Process. Technol., 2014, 214(1), p 21–28.

    Article  Google Scholar 

  4. K.F. Graff, Power Ultrasonics: Applications of High-Intensity Ultrasound, Woodhead Publishing, Cambridge, UK, Ultrasonic metal forming: Materials, 2015.

  5. V. Fartashvand, A. Abdullah, and S.S. Vanini, Investigation of Ti-6Al-4V Alloy Acoustic softening, Ultrason. Sonochem., 2017, 38, p 744–749.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Li, X. Chen, J. Sun, J. Li, and G. Zhao, Effects of Ultrasonic Vibration on Deformation Mechanism of Incremental Point-Forming Process, Procedia Eng., 2017, 207, p 777–782.

    Article  CAS  Google Scholar 

  7. J. Zhao, H. Su, and C. Wu, The Effect of Ultrasonic Vibration on Stress-Strain Relations during Compression Tests of Aluminum Alloys, J. Mater. Res. Technol., 2020, 9(6), p 14895–14906.

    Article  CAS  Google Scholar 

  8. A. Prabhakar, G.C. Verma, H. Krishnasamy, P.M. Pandey, M.G. Lee, and S. Suwas, Dislocation Density Based Constitutive Model for Ultrasonic Assisted Deformation, Mech. Res. Commun., 2017, 85, p 76–80.

    Article  Google Scholar 

  9. T. Wen, L. Wei, X. Chen, and C.L. Pei, Effects of Ultrasonic Vibration on Plastic Deformation of AZ31 during the Tensile Process, Int. J. Miner. Metall. Mater., 2011, 18(1), p 70–76.

    Article  CAS  Google Scholar 

  10. J. Kang, X. Liu, and M. Xu, Plastic Deformation of Pure Copper in Ultrasonic Assisted Micro-Tensile Test, Mater. Sci. Eng. A, 2020, 785, p 139364.

    Article  CAS  Google Scholar 

  11. J.C. Hung and Y.C. Tsai, Investigation of the Effects of Ultrasonic Vibration-Assisted Micro-Upsetting on Brass, Mater. Sci. Eng. A, 2013, 580, p 125–132.

    Article  CAS  Google Scholar 

  12. T. DoniÄ, G. Raab, D. Aksenov, R. Asfandiyarov, and B. Hadzima, Ultrasound Effect on Structure and Properties of Cu-0.5Cr under Upsetting, Mater. Sci. Technol., 2020, 36(8), p 933–938.

    Article  ADS  Google Scholar 

  13. Y. Liu, S. Suslov, Q. Han, C. Xu, and L. Hua, Microstructure of the Pure Copper Produced by Upsetting with Ultrasonic Vibration, Mater. Lett., 2012, 67(1), p 52–55.

    Article  CAS  Google Scholar 

  14. W. Liang, J. Xu, W. Ren, Z. Yu, Q. Liu, and H. Yu, Experimental Study on Ultrasonic Vibration Assisted Drilling of Ti-6Al-4V at Different Amplitudes, In 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M–NANO), IEEE, 2019, p 20–23.

  15. R. Pederson, Microstructure and Phase Transformation of Ti-6Al-4V (Doctoral dissertation, Lulea tekniska universitet), 2002.

  16. J.L. Walter, M.R. Jackson, and C.T. Sims, Titanium and its Alloys: Principles of Alloying Titanium, ASM Int, Materials Park, 1988, p 1.

    Google Scholar 

  17. G.E.R.D. Latjering, Influence of Processing on Microstructure and Mechanical Properties of (\(\alpha + \beta \)) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 32–45.

    Article  Google Scholar 

  18. J.B. Borradailee and R.H. Jeal, Critical Review–Mechanical Properties of Titanium alloys, Rolls–Royce Ltd., Aero Division, P.O.Box 31, Derby, England.

  19. J. Ran, F. Jiang, X. Sun, Z. Chen, C. Tian, and H. Zhao, Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Electron Beam Melting, Crystals, 2020, 10(11), p 972.

    Article  CAS  Google Scholar 

  20. P. Lipinski, A. Barbas, and A.S. Bonnet, Fatigue Behavior of Thin-Walled Grade 2 Titanium Samples Processed by Selective Laser Melting. Application to Life Prediction of Porous Titanium Implants, J. Mech. Behav. Biomed. Mater., 2013, 28, p 274–290.

    Article  CAS  PubMed  Google Scholar 

  21. M. Donachie, Titanium: A Technical Guide (Book), ASM International, Metals Park, 1988, vol 1988, p 484.

    Google Scholar 

  22. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, and F. Medina, R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20–32.

    Article  CAS  PubMed  Google Scholar 

  23. S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang, Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34(10), p 2377–2386.

    Article  Google Scholar 

  24. N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Mater. Sci. Eng. A, 2013, 573, p 271–277.

    Article  CAS  Google Scholar 

  25. G. Latjering, Property Optimization through Microstructural Control in Titanium and Aluminum Alloys, Mater. Sci. Eng. A, 1999, 263(2), p 117–126.

    Article  Google Scholar 

  26. M. Vanderhasten, L. Rabet, and B. Verlinden, Deformation Mechanisms of Ti-6Al-4V during Tensile Behavior at Low Strain Rate, J. Mater. Eng. Perform., 2007, 16(2), p 208–212.

    Article  CAS  Google Scholar 

  27. I. Konovalenko, P. Maruschak, J. Brezinová, and J. Brezina, Morphological Characteristics of Dimples of Ductile Fracture of VT23M Titanium Alloy and Identification of Dimples on Fractograms of Different Scale, Materials, 2019, 12(13), p 2051.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I–Yield Criteria and Flow Rules for Porous Ductile Media, 1977, p 2–15.

  29. S.H. Goods and L.M. Brown, The Nucleation of Cavities by Plastic Deformation, In Perspectives in Creep Fracture, Pergamon, 1983, p 71–85.

  30. W.M. Garrison Jr. and N.R. Moody, Ductile Fracture, J. Phys. Chem. Solids, 1987, 48(11), p 1035–1074.

    Article  CAS  ADS  Google Scholar 

  31. A.S. Argon, J. Im, and A. Needleman, Distribution of Plastic Strain and Negative Pressure in Necked Steel and Copper Bars, Metall. Trans. A, 1975, 6(4), p 815–824.

    Article  Google Scholar 

  32. A. Das, Fracture Complexity of Pressure Vessel Steels, Philos. Mag., 2017, 97(33), p 3084–3141.

    Article  CAS  ADS  Google Scholar 

  33. A. Das and J.K. Chakravartty, Fractographic Correlations with Mechanical Properties in Ferritic Martensitic Steels, Surf. Topogr. Metrol. Prop., 2017 5(4), p 045006.

    Article  ADS  Google Scholar 

  34. A. Das, Stress/Strain Induced Void?, Arch. Comput. Methods Eng., 2021, 28(3), p 1795–1852.

    Article  Google Scholar 

  35. Z. Zhou, S. Bhamare, and D. Qian, Ductile Fracture in Thin Sheet Metals: A FEM Study of the Sandia Fracture Challenge Problem Based on the Gurson–Tvergaard–Needleman Fracture Model, Int. J. Fract., 2014, 186(1), p 185–200.

    Article  CAS  Google Scholar 

  36. E.E. Underwood and E.A. Starke Jr, ASTM STP, 1979, vol 675, p 633.

  37. E.E. Underwood and S.B. Chakrabartty, ASTM STP, 1981, vol 733, p 337.

  38. W. Zhou and K.G. Chew, The Rate Dependent Response of a Titanium Alloy Subjected to Quasi-static Loading in Ambient Environment, J. Mater. Sci., 2002, 37(23), p 5159–5165.

    Article  CAS  ADS  Google Scholar 

  39. A. Kruglova, M. Roland, S. Diebels, T. Dahmen, P. Slusallek, and F. Macklich, Modelling and Characterization of Ductile Fracture Surface in Al-Si Alloys by Means of Voronoi Tessellation, Mater. Charact., 2017, 131, p 1–11.

    Article  CAS  Google Scholar 

  40. I. Konovalenko, P. Maruschak, M. Chausov, and O. Prentkovskis, Fuzzy Logic Analysis of Parameters of Dimples of Ductile Tearing on the Digital Image of Fracture Surface, Procedia Eng., 2017, 187, p 229–234.

    Article  CAS  Google Scholar 

  41. V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures, 2nd edn, Wiley-Interscience, New York, 1987, vol 1987, p 368.

    Google Scholar 

  42. D.V. Zagulyaev, S.V. Konovalov, N.G. Yaropolova, Y.F. Ivanov, I.A. Komissarova, and V.E. Gromov, Effect of the Magnetic Field on the Surface Morphology of Copper Upon Creep Fracture, J. Surf. Investig. x-ray Synchrotron Neutron Tech., 2015, 9(2), p 410–414.

    Article  CAS  Google Scholar 

  43. C.D. Beachem and G.R. Yoder, Elastic-Plastic Fracture by Homogeneous Microvoid Coalescence Tearing Along Alternating Shear Planes, Metall. Trans., 1973, 4(4), p 1145–1153.

    Article  CAS  Google Scholar 

  44. A.V. Kudrya, E.A. Sokolovskaya, N.H. Le, and H.N. Ngo, Relation Between the Morphology of Different-Nature Ductile Fractures and Properties of Structural Steels, Metal Sci. Heat Treat., 2018, 60(3), p 236–242.

    Article  CAS  ADS  Google Scholar 

  45. D. Broek, Some Contributions of Electron Fractography to the Theory of Fracture, Int. Metall. Rev., 1974, 19(1), p 135–182.

    Article  Google Scholar 

  46. J.S. Jha, S.P. Toppo, R. Singh, A. Tewari, and S.K. Mishra, Deformation Behavior of Ti-6Al-4V Microstructures under Uniaxial Loading: Equiaxed Vs. Transformed-ß Microstructures, Mater. Charact., 2021, 171, p 110780.

    Article  CAS  Google Scholar 

  47. D. Wu, L. Liu, L. Zhang, W. Wang, and K. Zhou, Tensile Deformation Mechanism and Micro-void Nucleation of Ti-55531 Alloy with Bimodal Microstructure, J. Mater. Res. Technol., 2020, 9(6), p 15442–15453.

    Article  CAS  Google Scholar 

  48. C. Huang, Y. Zhao, S. Xin, W. Zhou, Q. Li, and W. Zeng, Effect of Microstructure on Tensile Properties of Ti-5Al-5Mo-5V-3Cr-1Zr Alloy, J. Alloys Compd., 2017, 693, p 582–591.

    Article  CAS  Google Scholar 

  49. C.G. Rhodes, Influence of Alpha/Beta Interface Phase on Fracture Toughness and Fatigue Crack Growth Rate in Ti-6Al-4V, In Rockwell International Thousand Oaks CA Science Center, 1980.

  50. F.A. McClintock, Ductility, A.S.M., 1968, p 255–277.

  51. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, 1968, p 363–371.

  52. M.A. Greenfield and H. Margolin, The Mechanism of Void Formation, Void Growth, and Tensile Fracture in an Alloy Consisting of Two Ductile Phases, Metall. Trans., 1972, 3(10), p 2649–2659.

    Article  CAS  Google Scholar 

  53. H. Margolin and Y. Mahajan, Void Formation, Void Growth and Tensile Fracture in Ti-6AI-4V, Metall. Trans. A, 1978, 9(6), p 781–791.

    Article  Google Scholar 

  54. H. Margolin and L. Rosenberg, In Proc. 4th Int. Conf. on Titanium, Kyoto, ed. by H. Kimura, O. Izumi, The Metallurgical Society of AIME, Warrendale, 1980, vol 3, p 1637.

  55. J. He, Z. Cui, F. Chen, Y. Xiao, and L. Ruan, The New Ductile Fracture Criterion for 30Cr2Ni4MoV Ultra-Super-Critical Rotor Steel at Elevated Temperatures, Mater. Des., 2013, 52, p 547–555.

    Article  CAS  Google Scholar 

  56. J. Arndt, H. Majedi, and W. Dahl, Influence of Strain History on Ductile Failure of Steel, J. Phys. IV, 1996, 6(C6), p C6-23.

    Google Scholar 

  57. Z.N. Yang, F.C. Zhang, L. Qu, Z.G. Yan, Y.Y. Xiao, R.P. Liu, and X.Y. Zhang, Formation of Duplex Microstructure in Zr-2.3Nb Alloy and its Plastic Behaviour at Various Strain Rates, Int. J. Plast., 2014, 54, p 163–177.

    Article  CAS  Google Scholar 

  58. J.R. Seal, M.A. Crimp, T.R. Bieler, and C.J. Boehlert, Analysis of Slip Transfer and Deformation Behavior Across the \(\alpha /\beta \) Interface in Ti-5Al-2.5Sn (wt.%) with an Equiaxed Microstructure, Mater. Sci. Eng. A, 2012, 552, p 61–68.

    Article  CAS  Google Scholar 

  59. S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, and M.J. Mills, Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of an \(\alpha /\beta \) Titanium Alloy, Acta Mater., 1999, 47(3), p 1019–1034.

    Article  CAS  ADS  Google Scholar 

  60. M.F. Savage, J. Tatalovich, and M.J. Mills, Anisotropy in the Room-Temperature Deformation of \(\alpha -\beta \) Colonies in Titanium Alloys: Role of the \(\alpha /\beta \) Interface, Philos. Mag., 2004, 84(11), p 1127–1154.

    Article  CAS  ADS  Google Scholar 

  61. Y.K.M. Rao, V.V. Kutumba Rao, and P.R. Rao, Influence of Microstructure on Void Nucleation and Growth in a Near-\(\alpha \) Titanium Alloy IMI 685, Mater. Sci. Eng. A, 1989, 110, p 193–202.

    Article  Google Scholar 

  62. J.Z. Lu, J.S. Zhong, K.Y. Luo, L. Zhang, H. Qi, M. Luo, X.J. Xu, and J.Z. Zhou, Strain Rate Correspondence of Fracture Surface Features and Tensile Properties in AISI304 Stainless Steel under Different LSP Impact Time, Surf. Coat. Technol., 2013, 221, p 88–93.

    Article  CAS  Google Scholar 

  63. I. Konovalenko, P. Maruschak, O. Prentkovskis, and R. Juneviaius, Investigation of the Rupture Surface of the Titanium Alloy using Convolutional Neural Networks, Materials, 2018, 11(12), p 2467.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  64. R.L. Smith, J.J. Mecholsky, and S.W. Freiman, Estimation of Fracture Energy from the Work of Fracture and Fracture Surface Area: I. Stable Crack Growth, Int. J. Fract., 2009, 156(1), p 97–102.

    Article  CAS  Google Scholar 

  65. R.A. Wood, D.N. Williams, H.R. Ogden, and R.I. Jae, Dispersion Hardening in Binary Titanium Copper Alloys—Reply, Trans. AIME, 1959, 1959, p 215–308.

    Google Scholar 

  66. Z. Yao, G.Y. Kim, Z. Wang, L. Faidley, Q. Zou, D. Mei, and Z. Chen, Acoustic Softening and Residual Hardening in Aluminum: Modeling and Experiments, Int. J. Plast., 2012, 39, p 75–87.

    Article  CAS  Google Scholar 

  67. B. Langenecker, Effects of Ultrasound on Deformation Characteristics of Metals, IEEE Trans. Sonics Ultrason., 1966, 13(1), p 1–8.

    Article  Google Scholar 

  68. J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Evolution of Acoustic Softening Effect on Ultrasonic-Assisted Micro/Meso-Compression Behavior and Microstructure, Ultrasonics, 2020, 107, p 106107.

    Article  CAS  PubMed  Google Scholar 

  69. A.A. Samigullina, A.A. Mukhametgalina, S.N. Sergeyev, A.P. Zhilyaev, A.A. Nazarov, Y.R. Zagidullina, N.Y. Parkhimovich, V.V. Rubanik, and Y.V. Tsarenko, Microstructure Changes in Ultrafine-Grained Nickel Processed by High Pressure Torsion under Ultrasonic Treatment, Ultrasonics, 2018, 82, p 313–321.

    Article  CAS  PubMed  Google Scholar 

  70. R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, and A.J. Battger, The Effect of Tensile Deformation by In Situ Ultrasonic Treatment on the Microstructure of Low-Carbon Steel, Acta Mater., 2013, 61(5), p 1592–1602.

    Article  CAS  ADS  Google Scholar 

  71. I. Lum, H. Huang, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Effects of Superimposed Ultrasound on Deformation of Gold, J. Appl. Phys., 2009, 105(2), p 024905.

    Article  ADS  Google Scholar 

  72. R. Pohlman and E. Lehfeldt, Influence of Ultrasonic Vibration on Metallic Friction, Ultrasonics, 1966, 4(4), p 178–185.

    Article  CAS  Google Scholar 

  73. Y. Bai and M. Yang, Optimization of Metal Foils Surface Finishing using Vibration-Assisted Micro-Forging, J. Mater. Process. Technol., 2014, 214(1), p 21–28.

    Article  Google Scholar 

  74. K.F. Graff, Power Ultrasonics: Applications of High-Intensity Ultrasound, Woodhead Publishing, Cambridge, Ultrasonic metal forming: Materials, 2015.

  75. H. Zhou, H. Cui, Q.H. Qin, H. Wang, and Y. Shen, A Comparative Study of Mechanical and Microstructural Characteristics of Aluminium and Titanium Undergoing Ultrasonic Assisted Compression Testing, Mater. Sci. Eng. A, 2017, 682, p 376–388.

    Article  CAS  Google Scholar 

  76. https://www.wmtr.com/en.charpy.html

  77. S.H. Hashemi, Correction Factors for Safe Performance of API X65 Pipeline Steel, Int. J. Press. Vessels Pip., 2009, 86(8), p 533–540.

    Article  CAS  Google Scholar 

  78. S.A. Kotrechko and Y. Meshkov, Physical Interpretation of Fracture Characteristics Determined in Testing Charpy Specimens by Impact Bending, Strength Mater., 2001, 33(4), p 356–361.

    Article  CAS  Google Scholar 

Download references

Funding

The author received no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Das.

Ethics declarations

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human or Animal Rights

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Ultrasonic-Assisted Fracture Appearance of Titanium. J. of Materi Eng and Perform 33, 1485–1494 (2024). https://doi.org/10.1007/s11665-023-08047-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08047-5

Keywords

Navigation