Skip to main content

Advertisement

Log in

Production of Al-Ti Composite by a Combination of Accumulative Roll Bonding and Friction Stir Processing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, an in situ Al-Ti composite was fabricated by a combination of accumulative roll bonding (ARB) and friction stir processing (FSP). Following 3 cycles of ARB, FSP was performed for 5 passes with 16 mm min−1-line speed and 1600 rpm rotary speed. The structure and properties of the composite were investigated using an optical microscope (OM), scanning electron microscope (SEM), x-ray diffraction (XRD), hardness test, tensile strength, and abrasion test. It was found that with an increase in the number of ARB cycles, Ti layers were broken into smaller particles. Annealing after ARB caused the formation of initial Ti-Al intermetallic particles. Moreover, performing FSP on these samples led to the formation of a nanostructure containing Ti and Ti-Al intermetallic compounds in the Al matrix. XRD results showed that the titanium aluminides produced during FSP were TiAl3. XRD patterns also showed some unreacted primary Ti particles in the composites. The hardness of the ARB sample reduced remarkably after annealing at 600 °C for 180 min. The structure of the composite was refined, and its hardness increased after the FSP process. The maximum hardness was 81.4 BHN which was obtained after 3 passes of FSP. The tensile and yield strength of Al-Ti-AlTi3 composites increased from 89 to 140 MPa compared to annealed Al. Abrasion tests showed that the wear mechanism of ARB and FSP samples was a combination of adhesive and abrasive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. V. Güther, M. Allen, J. Klose, and H. Clemens, Metallurgical Processing of Titanium Aluminides on Industrial Scale, Intermetallics (Barking), 2018, 103(June), p 12–22. https://doi.org/10.1016/j.intermet.2018.09.006

    Article  CAS  Google Scholar 

  2. Y. Jiang and Y. He, Reactive Synthesis of Asymmetric Porous TiAl Intermetallic Compound Membrane, Mater. Res. Express, 2019 https://doi.org/10.1088/2053-1591/ab5244

    Article  Google Scholar 

  3. M. Mehdizade, A.R. Eivani, and M. Soltanieh, Effects of Reduced Surface Grain Structure and Improved Particle Distribution on Pitting Corrosion of AA6063 Aluminum Alloy, J. Alloys Compd., 2020, 838, p 155464. https://doi.org/10.1016/j.jallcom.2020.155464

    Article  CAS  Google Scholar 

  4. A.R. Eivani, M. Mehdizade, S. Chabok, and J. Zhou, Applying Multi-pass Friction Stir Processing to Refine the Microstructure and Enhance the Strength, Ductility and Corrosion Resistance of WE43 Magnesium Alloy, J. Mater. Res. Technol., 2021, 12, p 1946–1957. https://doi.org/10.1016/j.jmrt.2021.03.021

    Article  CAS  Google Scholar 

  5. M. Mehdizade, A.R. Eivani, F. Tabatabaei, H.R. Jafarian, and J. Zhou, Microstructural Basis for Improved Corrosion Resistance and Mechanical Properties of Fabricated Ultra-Fine Grained Mg-Akermanite Composites, Mater. Chem. Phys., 2022 https://doi.org/10.1016/J.MATCHEMPHYS.2022.126765

    Article  Google Scholar 

  6. M. Izadi, M. Soltanieh, S. Alamolhoda, S.M.S. Aghamiri, and M. Mehdizade, Microstructural Characterization and Corrosion Behavior of AlxCoCrFeNi High Entropy Alloys, Mater. Chem. Phys., 2021, 273(July), p 124937. https://doi.org/10.1016/j.matchemphys.2021.124937

    Article  CAS  Google Scholar 

  7. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia, Tougher Ultrafine Grain Cu via High-Angle Grain Boundaries and Low Dislocation Density, Appl. Phys. Lett., 2008 https://doi.org/10.1063/1.2870014

    Article  Google Scholar 

  8. M. Shaat, A. Fathy, and A. Wagih, Correlation Between Grain Boundary Evolution and Mechanical Properties of Ultrafine-Grained Metals, Mech. Mater., 2020, 143(August 2019), p 103321. https://doi.org/10.1016/j.mechmat.2020.103321

    Article  Google Scholar 

  9. M.S. Abd-Elwahed, A.F. Ibrahim, and M.M. Reda, Effects of ZrO2 Nanoparticle Content on Microstructure and Wear Behavior of Titanium Matrix Composite, J. Mater. Res. Technol., 2020, 9(4), p 8528–8534. https://doi.org/10.1016/j.jmrt.2020.05.021

    Article  CAS  Google Scholar 

  10. A. Fathy, A. Shaker, M.A. Hamid, and A.A. Megahed, The Effects of Nano-silica/Nano-alumina on Fatigue Behavior of Glass Fiber-Reinforced Epoxy Composites, J. Compos. Mater., 2017, 51(12), p 1667–1679. https://doi.org/10.1177/0021998316661870

    Article  CAS  Google Scholar 

  11. M. Reihanian, E. Bagherpour, N. Pardis, R. Ebrahimi, and N. Tsuji, Ten Years of Severe Plastic Deformation (SPD) in Iran, Part II: Accumulative Roll Bonding (ARB), Iran. J. Mater. Form., 2018, 5(2), p 1–25.

    Google Scholar 

  12. E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, An Overview on Severe Plastic Deformation: Research Status, Techniques Classification, Microstructure Evolution and Applications

  13. D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process, Mater. Sci. Eng., A, 2017, 708, p 301–310. https://doi.org/10.1016/j.msea.2017.09.085

    Article  CAS  Google Scholar 

  14. Q. Zhang, B.L. Xiao, D.. Wang, Z.Y. Ma, Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing. Mater. Chem. Phys., 2011, 130(3), p 1109–1117. https://doi.org/10.1016/j.matchemphys.2011.08.042

    Article  CAS  Google Scholar 

  15. A.R. Eivani, F. Tabatabaei, A.R. Khavandi, M. Tajabadi, M. Mehdizade, H.R. Jafarian, and J. Zhou, The Effect of Addition of Hardystonite on the Strength, Ductility and Corrosion Resistance of WE43 Magnesium Alloy, J. Mater. Res. Technol., 2021, 13, p 1855–1865. https://doi.org/10.1016/j.jmrt.2021.05.027

    Article  CAS  Google Scholar 

  16. X. Liu, L. Zhuang, and Y. Zhao, Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing, Materials, 2020, 13(22), p 1–17. https://doi.org/10.3390/ma13225171

    Article  CAS  Google Scholar 

  17. R. Xu, N. Liang, L. Zhuang, D. Wei, and Y. Zhao, Microstructure and Mechanical Behaviors of Al/Cu Laminated Composites Fabricated by Accumulative Roll Bonding and Intermediate Annealing, Mater. Sci. Eng. A, 2022 https://doi.org/10.1016/j.msea.2021.142510

    Article  Google Scholar 

  18. R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on Microstructure and Mechanical Properties of Al-Zn Composite During Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng., A, 2011, 530(1), p 63–72. https://doi.org/10.1016/j.msea.2011.09.040

    Article  CAS  Google Scholar 

  19. O. Esmaeilzadeh, A.R. Eivani, M. Mehdizade, S.M.A. Boutorabi, and S.M. Masoudpanah, An Investigation of Microstructural Background for Improved Corrosion Resistance of WE43 Magnesium-Based Composites with ZnO and Cu/ZnO Additions, J. Alloys Compd., 2022, 908, p 164437. https://doi.org/10.1016/j.jallcom.2022.164437

    Article  CAS  Google Scholar 

  20. M. Tamizi Junqani, H.R. Madaah Hosseini, and A. Azarniya, Comprehensive Structural and Mechanical Characterization of In-Situ Al–Al3Ti Nanocomposite Modified by Heat Treatment, Mater. Sci. Eng. A, 2020 https://doi.org/10.1016/j.msea.2020.139351

    Article  Google Scholar 

  21. Y.L. Ma, J.F. Li, F.J. Sang, H.Y. Li, Z.Q. Zheng, and C. Huang, Grain Structure and Tensile Property of Al-Li Alloy Sheet Caused by Different Cold Rolling Reduction, Trans. Nonferr. Met. Soc. China (Eng. Ed.), 2019, 29(8), p 1569–1582. https://doi.org/10.1016/S1003-6326(19)65064-8

    Article  CAS  Google Scholar 

  22. O. Esmaielzadeh, A.R. Eivani, M. Mehdizade, S.M.A. Boutorabi, and S.M. Masoudpanah, Investigation of Mechanical Properties and Antibacterial Behavior of WE43 Magnesium-Based Nanocomposite, Mater. Chem. Phys., 2022 https://doi.org/10.1016/j.matchemphys.2022.126864

    Article  Google Scholar 

  23. A. Mohamed, M.M. Mohammed, A.F. Ibrahim, and O.A. El-Kady, Effect of Nano Al2O3 Coated Ag Reinforced Cu Matrix Nanocomposites on Mechanical and Tribological Behavior Synthesis by P/M Technique, J. Compos. Mater., 2020, 54(30), p 4921–4928. https://doi.org/10.1177/0021998320934860

    Article  CAS  Google Scholar 

  24. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18(17), p 2280–2283. https://doi.org/10.1002/adma.200600310

    Article  CAS  Google Scholar 

  25. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper, Adv. Mater., 2006, 18(22), p 2949–2953. https://doi.org/10.1002/adma.200601472

    Article  CAS  Google Scholar 

  26. T. Mo, J. Chen, Z. Chen, J. Liu, Z. Zhou, W. He, and Q. Liu, Effect of Intermetallic Compounds (IMCs) on the Interfacial Bonding Strength and Mechanical Properties of Pre-rolling Diffusion ARBed Al/Ti Laminated Composites, Mater. Charact., 2020, 170(October), p 110731. https://doi.org/10.1016/j.matchar.2020.110731

    Article  CAS  Google Scholar 

  27. N. Gangil, A.N. Siddiquee, and S. Maheshwari, Aluminium Based In-Situ Composite Fabrication Through Friction Stir Processing: A Review, J. Alloys Compd., 2017, 715, p 91–104. https://doi.org/10.1016/j.jallcom.2017.04.309

    Article  CAS  Google Scholar 

  28. Y. Hovanski, J.E. Carsley, K.D. Clarke, and P.E. Krajewski, Friction-Stir Welding and Processing, JOM, 2015, 67(5), p 996–997. https://doi.org/10.1007/s11837-015-1397-5

    Article  Google Scholar 

  29. M.K. Gupta, Friction Stir Process: A Green Fabrication Technique for Surface Composites—A Review Paper, SN Appl. Sci., 2020 https://doi.org/10.1007/s42452-020-2330-2

    Article  Google Scholar 

  30. S.M. Ghalehbandi, M. Malaki, and M. Gupta, Accumulative Roll Bonding—A Review, Appl. Sci., 2019 https://doi.org/10.3390/app9173627

    Article  Google Scholar 

  31. F. Khodabakhshi, A. Simchi, A.H. Kokabi, and A.P. Gerlich, Friction Stir Processing of an Aluminum-Magnesium Alloy with Pre-placing Elemental Titanium Powder: In-Situ Formation of an Al3Ti-Reinforced Nanocomposite and Materials Characterization, Mater. Charact., 2015, 108, p 102–114. https://doi.org/10.1016/j.matchar.2015.08.016

    Article  CAS  Google Scholar 

  32. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, and A. Deschamps, Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Prog. Mater. Sci., 2020, 117(September 2020), p 100752. https://doi.org/10.1016/j.pmatsci.2020.100752

    Article  CAS  Google Scholar 

  33. M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloys Compd., 2010, 492(1–2), p 231–235. https://doi.org/10.1016/j.jallcom.2009.12.026

    Article  CAS  Google Scholar 

  34. M.R. Toroghinejad, R. Jamaati, A. Nooryan, and H. Edris, The Effect of Alumina Content on the Mechanical Properties of Hybrid Composites Fabricated by ARB Process, Ceram. Int., 2014, 40(7 PART B), p 10489–10498. https://doi.org/10.1016/j.ceramint.2014.03.020

    Article  CAS  Google Scholar 

  35. L.F. Ali, N. Kuppuswamy, R. Soundararajan, K.R. Ramkumar, and S. Sivasankaran, Microstructural Evolutions and Mechanical Properties Enhancement of AA 6063 Alloy Reinforced with Tungsten (W) Nanoparticles Processed by Friction Stir Processing, Mater. Charact., 2021, 172(December 2020), p 110903. https://doi.org/10.1016/j.matchar.2021.110903

    Article  CAS  Google Scholar 

  36. M. Paidar, O.O. Ojo, H.R. Ezatpour, and A. Heidarzadeh, Influence of Multi-pass FSP on the Microstructure, Mechanical Properties and Tribological Characterization of Al/B 4 C Composite Fabricated by Accumulative Roll Bonding (ARB), Surf. Coat. Technol., 2019, 361(October 2018), p 159–169. https://doi.org/10.1016/j.surfcoat.2019.01.043

    Article  CAS  Google Scholar 

  37. M.K. Yadav, A.N. Siddiquee, and Z.A. Khan, Characterization of Ti–Al Intermetallic Synthesized by Mechanical Alloying Process, Met. Mater. Int., 2021, 27(7), p 2378–2386. https://doi.org/10.1007/s12540-019-00603-w

    Article  CAS  Google Scholar 

  38. M. Mehdizade, A.R. Eivani, and M. Soltanieh, Characterization of the Anodic Oxide Layer Deposited on Severely Deformed and Aged AA6063 Aluminum Alloy, J. Mater. Res. Technol., 2021, 15, p 68–85. https://doi.org/10.1016/j.jmrt.2021.07.133

    Article  CAS  Google Scholar 

  39. A.F. Meselhy and M.M. Reda, Investigation of Mechanical Properties of Nanostructured Al-SiC Composite Manufactured by Accumulative Roll Bonding, J. Compos. Mater., 2019, 53(28–30), p 3951–3961. https://doi.org/10.1177/0021998319851831

    Article  CAS  Google Scholar 

  40. Y.H. Zhao and E.J. Lavernia, The Mechanical Properties of Multi-scale Metallic Materials, Woodhead Publishing Limited, 2011. https://doi.org/10.1533/9780857091123.3.375

    Book  Google Scholar 

  41. M. Reihanian, F.K. Hadadian, and M.H. Paydar, Fabrication of Al-2vol% Al2O3/SiC Hybrid Composite via Accumulative Roll Bonding (ARB): An Investigation of the Microstructure and Mechanical Properties, Mater. Sci. Eng., A, 2014, 607, p 188–196. https://doi.org/10.1016/j.msea.2014.04.013

    Article  CAS  Google Scholar 

  42. B. Guo, S. Ni, R. Shen, and M. Song, Fabrication of Ti-Al3Ti Core-Shell Structured Particle Reinforced Al Based Composite with Promising Mechanical Properties, Mater. Sci. Eng., A, 2015, 639, p 269–273. https://doi.org/10.1016/j.msea.2015.05.015

    Article  CAS  Google Scholar 

  43. B. Guo, S. Ni, R. Shen, and M. Song, Corrigendum to ‘Fabrication of Ti–Al3Ti Core–Shell Structured Particle Reinforced Al Based Composite with Promising Mechanical Properties’ [Mater. Sci. Eng. A 639 (2015) 269–273], Mater. Sci. Eng. A, 2016, 656, p 222. https://doi.org/10.1016/j.msea.2016.01.041

    Article  CAS  Google Scholar 

  44. A.M. Sadoun, A.F. Meselhy, and A.W. Deabs, Improved Strength and Ductility of Friction Stir Tailor-Welded Blanks of Base Metal AA2024 Reinforced with Interlayer Strip of AA7075, Results Phys., 2020, 16(December 2019), p 102911. https://doi.org/10.1016/j.rinp.2019.102911

    Article  Google Scholar 

  45. S. Shahraki, S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP), Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2013, 44(6), p 1546–1553. https://doi.org/10.1007/s11663-013-9914-9

    Article  CAS  Google Scholar 

  46. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  47. M. J. Moradi, M. H. Enayati, F. Karimzadeh, M. Engineering, and U. Kingdom, Production of Al-Ti Composite by a Combination of ARB and FSP Process

  48. T.R. McNelley, Friction Stir Processing (FSP): Refining Microstructures and Improving Properties, Rev. Metal., 2010, 46(Extra), p 149–156. https://doi.org/10.3989/revmetalmadrid.19xiipms

    Article  Google Scholar 

  49. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, 39 A(3), p 642–658. https://doi.org/10.1007/s11661-007-9459-0

    Article  CAS  Google Scholar 

  50. A.M. Sadoun, A. Wagih, A. Fathy, and A.R.S. Essa, Effect of Tool Pin Side Area Ratio on Temperature Distribution in Friction Stir Welding, Results Phys., 2019, 15(November), p 102814. https://doi.org/10.1016/j.rinp.2019.102814

    Article  Google Scholar 

  51. E.R.I. Mahmoud and A.M.A. Al-qozaim, Fabrication of In-Situ Al–Cu Intermetallics on Aluminum Surface by Friction Stir Processing, Arab. J. Sci. Eng., 2016, 41(5), p 1757–1769. https://doi.org/10.1007/s13369-015-1889-1

    Article  CAS  Google Scholar 

  52. A. Najafi, M. Movahedi, and A.S. Yarandi, Properties–Microstructure Relationship in Al-Fe In Situ Composite Produced by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2019, 233(10), p 1955–1965. https://doi.org/10.1177/1464420718803752

    Article  CAS  Google Scholar 

  53. D. Yadav, R. Bauri, A. Kauffmann, and J. Freudenberger, Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(8), p 4226–4238. https://doi.org/10.1007/s11661-016-3597-1

    Article  CAS  Google Scholar 

  54. M. Narimani, B. Lotfi, and Z. Sadeghian, Investigating the Microstructure and Mechanical Properties of Al-TiB2 Composite Fabricated by Friction Stir Processing (FSP), Mater. Sci. Eng., A, 2016, 673, p 436–442. https://doi.org/10.1016/j.msea.2016.07.086

    Article  CAS  Google Scholar 

  55. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (accumulative roll-bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5(5), p 338–344. https://doi.org/10.1002/adem.200310077

    Article  CAS  Google Scholar 

  56. X. Liu, D. Wei, L. Zhuang, C. Cai, and Y. Zhao, Fabrication of High-Strength Graphene Nanosheets/Cu Composites by Accumulative Roll Bonding, Mater. Sci. Eng., A, 2015, 642(July), p 1–6. https://doi.org/10.1016/j.msea.2015.06.032

    Article  CAS  Google Scholar 

  57. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, and E.J. Lavernia, High Tensile Ductility and Strength in Bulk Nanostructured Nickel, Adv. Mater., 2008, 20(16), p 3028–3033. https://doi.org/10.1002/adma.200800214

    Article  CAS  Google Scholar 

  58. A. Školáková, P. Salvetr, J. Leitner, T. Lovaši, and P. Novák, Formation of Phases in Reactively Sintered TiAl3 Alloy, Molecules, 2020 https://doi.org/10.3390/molecules25081912

    Article  Google Scholar 

  59. Y. Chen, J. Nie, F. Wang, H. Yang, C. Wu, X. Liu, and Y. Zhao, Revealing Hetero-Deformation Induced (HDI) Stress Strengthening Effect in Laminated Al-(TiB2+TiC)p/6063 Composites Prepared by Accumulative Roll Bonding, J. Alloys Compd., 2020, 815, p 152285. https://doi.org/10.1016/j.jallcom.2019.152285

    Article  CAS  Google Scholar 

  60. A. Školáková, P. Salvetr, P. Novák, J. Leitner, and D. Deduytsche, Mechanism of the Intermediary Phase Formation in Ti-20 wt.% Al Mixture During Pressureless Reactive Sintering, Materials, 2019 https://doi.org/10.3390/ma12132171

    Article  Google Scholar 

  61. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Tailoring Stacking Fault Energy for High Ductility and High Strength in Ultrafine Grained Cu and Its Alloy, Appl. Phys. Lett., 2006, 89(12), p 89–91. https://doi.org/10.1063/1.2356310

    Article  CAS  Google Scholar 

  62. A. Melaibari, A. Fathy, M. Mansouri, and M.A. Eltaher, Experimental and Numerical Investigation on Strengthening Mechanisms of Nanostructured Al-SiC Composites, J. Alloys Compd., 2019, 774, p 1123–1132. https://doi.org/10.1016/j.jallcom.2018.10.007

    Article  CAS  Google Scholar 

  63. A.G. Rao, K.R. Ravi, B. Ramakrishnarao, V.P. Deshmukh, A. Sharma, N. Prabhu, and B.P. Kashyap, Recrystallization Phenomena During Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(3), p 1519–1529. https://doi.org/10.1007/s11661-012-1489-6

    Article  CAS  Google Scholar 

  64. S. Pradeep, V.K.S. Jain, S. Muthukumaran, and R. Kumar, Microstructure and Texture Evolution During Multi-pass Friction Stir Processed AA5083, Mater. Lett., 2021 https://doi.org/10.1016/j.matlet.2021.129382

    Article  Google Scholar 

  65. M. Paidar, O.O. Ojo, H.R. Ezatpour, and A. Heidarzadeh, Influence of Multi-pass FSP on the Microstructure, Mechanical Properties and Tribological Characterization of Al/B 4 C Composite Fabricated by Accumulative Roll Bonding (ARB), Surf. Coat. Technol., 2019, 361, p 159–169. https://doi.org/10.1016/j.surfcoat.2019.01.043

    Article  CAS  Google Scholar 

  66. K. Zass, S. Mabuwa, and V. Msomi, A Review on Reinforced Particles Used on the Production of FSP Composites, Mater. Today Proc., 2022 https://doi.org/10.1016/j.matpr.2021.12.210

    Article  Google Scholar 

  67. M. Zhang, M. Paidar, O.O. Ojo, S. Mehrez, S. Narayanasamy, A.M. Zain, and V. Mohanavel, Impact of Multiple FSP Passes on Structure, Mechanical, Tribological and Corrosion Behaviors of AA6061/316 Stainless-Steel Reinforced Al Matrix Composites, Surf. Coat. Technol., 2022 https://doi.org/10.1016/j.surfcoat.2022.128801

    Article  Google Scholar 

  68. A.M. Sadoun, I.R. Najjar, G.S. Alsoruji, M.S. Abd-Elwahed, M.A. Elaziz, and A. Fathy, Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method, Mathematics, 2022 https://doi.org/10.3390/math10081266

    Article  Google Scholar 

  69. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia, Influence of Specimen Dimensions on the Tensile Behavior of Ultrafine-Grained Cu, Scr. Mater., 2008, 59(6), p 627–630. https://doi.org/10.1016/j.scriptamat.2008.05.031

    Article  CAS  Google Scholar 

  70. M.S. El-Wazery, A.R. El-Desouky, O.A. Hamed, A. Fathy, and N.A. Mansour, Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials, Int. J. Eng. Trans. A, 2013, 26(4), p 375–382. https://doi.org/10.5829/idosi.ije.2013.26.04a.06

    Article  Google Scholar 

  71. M.J. Starink, Analysis of Aluminium Based Alloys by Calorimetry: Quantitative Analysis of Reactions and Reaction Kinetics, Int. Mater. Rev., 2004, 49(3–4), p 191–226. https://doi.org/10.1179/095066004225010532

    Article  CAS  Google Scholar 

  72. Y. Zhao, T. Topping, Y. Li, and E.J. Lavernia, Strength and Ductility of bi-Modal Cu, Adv. Eng. Mater., 2011, 13(9), p 865–871. https://doi.org/10.1002/adem.201100019

    Article  CAS  Google Scholar 

  73. Y. Zhao, Y. Zhu, and E.J. Lavernia, Strategies for Improving Tensile Ductility of Bulk Nanostructured Materials, Adv. Eng. Mater., 2010, 12(8), p 769–778. https://doi.org/10.1002/adem.200900335

    Article  CAS  Google Scholar 

  74. M. Elwan, A. Fathy, A. Wagih, A.R.S. Essa, A. Abu-Oqail, and A.E. El-Nikhaily, Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-based Al Composite by Accumulative Roll Bonding, J. Compos. Mater., 2020, 54(10), p 1259–1271. https://doi.org/10.1177/0021998319876684

    Article  CAS  Google Scholar 

  75. N. El Mahallawy, A. Fathy, and M. Hassan, Evaluation of Mechanical Properties and Microstructure of Al/Al–12%Si Multilayer via Warm Accumulative Roll Bonding Process, J. Compos. Mater., 2017 https://doi.org/10.1177/0021998317692141

    Article  Google Scholar 

  76. A.M. Sadoun, F.A. El-Wadoud, A. Fathy, A.M. Kabeel, and A.A. Megahed, Effect of Through-the-Thickness Position of Aluminum Wire Mesh on the Mechanical Properties of GFRP/Al Hybrid Composites, J. Mater. Res. Technol., 2021, 15, p 500–510. https://doi.org/10.1016/j.jmrt.2021.08.026

    Article  CAS  Google Scholar 

  77. A.M. Sadoun, I.M.R. Najjar, M.S. Abd-Elwahed, and A. Meselhy, Experimental Study on Properties of Al–Al2O3 Nanocomposite Hybridized by Graphene Nanosheets, J. Mater. Res. Technol., 2020, 9(6), p 14708–14717. https://doi.org/10.1016/j.jmrt.2020.10.011

    Article  CAS  Google Scholar 

  78. I.M.R. Najjar, A.M. Sadoun, M. Abd Elaziz, A.W. Abdallah, A. Fathy, and A.H. Elsheikh, Predicting Kerf Quality Characteristics in Laser Cutting of Basalt Fibers Reinforced Polymer Composites Using Neural Network and Chimp Optimization, Alex. Eng. J., 2022, 61(12), p 11005–11018. https://doi.org/10.1016/j.aej.2022.04.032

    Article  Google Scholar 

Download references

Acknowledgments

This paper and the research behind it would not have been possible without the exceptional support of my supervisors, Professors Enayati and Karim Zadeh. Their enthusiasm, knowledge and exacting attention to detail have been an inspiration and kept my work on track. I am also grateful for the insightful comments offered by my colleagues. Their generosity and expertise have greatly improved this study in numerous ways and saved me from many errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Karimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M.J., Enayati, M.H., Karimzadeh, F. et al. Production of Al-Ti Composite by a Combination of Accumulative Roll Bonding and Friction Stir Processing. J. of Materi Eng and Perform 33, 634–650 (2024). https://doi.org/10.1007/s11665-023-07995-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07995-2

Keywords

Navigation