Skip to main content
Log in

Effect of Cold Rolling and Subsequent Annealing on the Corrosion Resistance of Ag-Containing CD4MCu Duplex Stainless Steels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the corrosion resistance of CD4MCu (UNS J93370) duplex stainless steel both at cold-rolled and annealed states was studied with respect to microstructure, α'-martensite, α/γ phase boundaries, LAGBs (low-angle grain boundaries), Σ3 and textures. A series of characterization methods including optical microscopy, electron backscatter diffraction (EBSD), x-ray diffraction (XRD) and electrochemical testing were applied to analyze the microstructure and interpret the corrosion resistance changes. The results show that as the cold rolling deformation increases, the phase spacing decreases and the γ/α interphase boundary ratio increases. Strain-induced martensite forms during plastic deformation and the amount increases as the deformation goes on. After cold rolling, Cu, S, brass and Goss textures form in γ phase, and weaker α- and γ-fiber textures form in α phase. After annealing, the texture intensity in the γ phase is weakened, while the γ-fiber texture in the ferrite phase is enhanced. The corrosion resistance can be improved by appropriate deformation and annealing. The increment of LAGB and Σ3 grain boundary with low interfacial energy and the favorable textures induced during deformation are suggested to be responsible for the improvement in the corrosion resistance. They offset the negative effects of α'-martensite and defects on the corrosion resistance. As a function of deformation level, the corrosion resistance of both the deformed and annealed samples enhanced first and then decreased, reaching the best corrosion resistance at 60% deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S. Hertzman, B. Brolund and P.J. Ferreira, An Experimental and Theoretical Study of Heat-affected Zone Austenite Reformation in Three Duplex Stainless Steels, Metall. Mater. Trans. A, 1997, 28, p 277-285.

    Article  Google Scholar 

  2. W.A. Baeslack and J.C. Lippold, Phase Transformation Behavior Duplex Stainless Steel Weldments, Metal Const., 1988, 20(1), p 26R-31R.

    CAS  Google Scholar 

  3. D. Zhang, P. Wen, B. Yin and A. Liu, Temperature Evolution, Phase Ratio and Corrosion Resistance of Duplex Stainless Steels Treated by Laser Surface Heat Treatment, J. Manuf. Process., 2021, 62, p 99-107.

    Article  Google Scholar 

  4. K. Dong-cho, O. Tomo, H. Ryosuke, S. Yamashita and S. Kazuyoshi, Theoretical Phase-field-method-based Model of the γ Phase Dissolution of base Metals in Duplex Stainless Steels, Mater. Today Commun., 2021, 26, 102150.

    Article  Google Scholar 

  5. Y. Dong, X. Li, L. Tian, T. Bell, R.L. Sammons and H. Dong, Towards long-lasting Antibacterial Stainless Steel Surfaces by Combining Double Glow Plasma Silvering with Active Screen Plasma Nitriding, Acta Biomater., 2011, 7(1), p 447-457.

    Article  CAS  Google Scholar 

  6. K.R. Sreekumari, K. Nandakumar and K. Takao, Silver Containing Stainless Steel as a new Outlook to Abate Bacterial Adhesion and Microbiologically Influenced Corrosion, ISIJ Int., 2003, 43, p 1799-1806.

    Article  CAS  Google Scholar 

  7. D.Y. Lin, S.M. Yang, Y.C. Chou, Y.Y. Fang and H.S. Wang, Effect of Ag Doping in 2205 Duplex Stainless Steel on Corrosion Resistance, Appl. Mech. Mater., 2011, 110-116, p 1207-1212.

    Article  Google Scholar 

  8. Q. Cai, S.X. Li and J.B. Pu, Corrosion Resistance and Antifouling Activities of Silver-doped CrN Coatings Deposited by Magnetron Sputtering, Surf. Coat Tech., 2018, 354, p 194–202.

    Article  CAS  Google Scholar 

  9. L.J. Wang, F. Zhang, A. Fong, K.M. Lai, P.W. Shum, Z.F. Zhou, T. Fu, P. Ning and S.Y. Yang, Tungsten Film as a Hard and Compatible Carrier for Antibacterial Agent of Silver, J. Mater. Sci., 2018, 53, p 10640–10652.

    Article  CAS  Google Scholar 

  10. Y. Dong, J. Li, D. Xu, G. Song, D. Liu, H. Wang, S. Khan, K. Yang and F. Wang, Investigation of Microbial Corrosion Inhibition of Cu-bearing 316L Stainless Steel in the Presence of Acid Producing Bacterium Acidithiobacillus Caldus SM-1, J. Mater. Sci. Tech., 2021, 64, p 176–186.

    Article  CAS  Google Scholar 

  11. E.I. Kivineva, N.E. Hannerz, The properties of Gleeble simulated heat affected zone of SAF2205 and SAF2507 duplex stainless steels. In: Proceedings of Duplex Stainless Steels Conference, Glasgow, Scotland, November 13–16, 1994, p 7.

  12. R. Badji, B. Bacroix and M. Bouabdallah, Texture, Microstructure and Anisotropic Properties in Annealed 2205 Duplex Stainless Steel Welds, Mater. Charact., 2011, 62, p 833–843.

    Article  CAS  Google Scholar 

  13. T. Xi, L. Yin, C. Yang and K. Yang, Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel, Acta Metall, Sin.-Engl., 2019, 32, p 1537–1548.

    CAS  Google Scholar 

  14. N. Akdut and J. Foct, Phase Boundaries and Deformation in High Nitrogen Duplex Stainless Steels I.—Rolling Texture Development, Scripta Metall. Mater., 1995, 32, p 103–108.

    Article  CAS  Google Scholar 

  15. M.L. Köhler, J. Kunz, S. Herzog, A. Kaletsch and C. Broeckmann, Microstructure analysis of novel LPBF-processed duplex stainless steels correlated to their mechanical and corrosion properties, Mater. Sci. Eng. A, 2021, 801, 140432.

    Article  Google Scholar 

  16. S.W. Hwang, J.H. Ji, E.G. Lee and K. Park, Tensile Deformation of a Duplex Fe–20Mn–9Al–0.6C Steel Having the Reduced Specific Weight, Mater. Sci. Eng. A, 2011, 528, p 5196–5203.

    Article  CAS  Google Scholar 

  17. L. Xie, T. Huang, L. Zhang, W. Cao, G. Wu and X. Huang, Managing both Strength and Ductility in Duplex Stainless Steel with Heterogeneous Lamella Structure, Mater. Sci. Eng. A, 2018, 738, p 190–193.

    Article  CAS  Google Scholar 

  18. J. Lv, T. Liang, C. Wang and L. Dong, Effect of Ultrafine grain on Tensile Behaviour and Corrosion Resistance of the Duplex Stainless Steel, Mater. Sci. Eng. C, 2016, 62, p 558–563.

    Article  CAS  Google Scholar 

  19. Y. Zhao, X. Liu, X. Li, W. Zhang, S. Tang and Z. Liu, Pitting Corrosion Behavior in Novel Mn–N Alloyed lean Duplex Stainless Steel Containing Cu, J. Mater. Sci., 2018, 53, p 1–13.

    Google Scholar 

  20. S. Tanhaei, Kh. Gheisari and S.R. Alavi Zaree, Effect of Cold Rolling on the Microstructural, Magnetic, Mechanical, and Corrosion Properties of AISI 316L Austenitic Stainless Steel, Int. J. Min. Met. Mater, 2018, 25, p 630–640.

    Article  CAS  Google Scholar 

  21. H. Luo, X. Wang, C. Dong, K. Xiao and X. Li, Effect of Cold Deformation on the Corrosion Behaviour of UNS S31803 Duplex Stainless Steel in Simulated Concrete Pore Solution, Corros. Sci., 2017, 124, p 178–192.

    Article  CAS  Google Scholar 

  22. M. Breda, L. Pezzato and I. Calliari, Effect of Cold Rolling on Pitting Resistance in Duplex Stainless Steels, La Metall. Ital., 2015, 106, p 15–19.

    Google Scholar 

  23. Y. Yang and B. Yan, Effect of High Temperature Compression Deformation Strain Rate on the Microstructure and Corrosion Behavior of 2205 Duplex Stainless Steel, Anti-Corros. Methods Mater., 2015, 62, p 163–171.

    Article  CAS  Google Scholar 

  24. Y. Zhao, Y. Wang, X. Li, W. Zhang, S. Tang and Z. Liu, Effects of Plastic Straining on the Corrosion Resistance of TRIP-aided Lean Duplex Stainless Steels, J. Mater. Sci., 2018, 53, p 9259–9272.

    Google Scholar 

  25. W.M.F.W. Mohamad, M.Z. Selamat, B. Bundjali and M. Musa, Effect of Cold Rolling Process on the Microstructure and Corrosion Behaviors of 316L Stainless Steel in Simulated Body Fluids, Appl. Mech. Mater., 2014, 548–549, p 310–315.

    Article  Google Scholar 

  26. M. Talha, C.K. Behera, S. Kumar, O. Pal, G. Singh and O.P. Sinha, Long Term and Electrochemical Corrosion Investigation of cold Worked AISI 316L and 316LVM Stainless Steels in Simulated body Fluid, Rsc. Adv., 2014, 4, p 13340–13349.

    Article  CAS  Google Scholar 

  27. B. Ravi Kumar, B. Mahato and R. Singh, Influence of Cold-worked Structure on Electrochemical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2007, 38, p 2085–2094.

    Article  Google Scholar 

  28. P.O. Malta, F.L. Dias, S.A.C.M. De and D.B. Santos, Microstructure and Texture Evolution of Duplex Stainless Steels with Different Molybdenum Contents, Mater. Charact., 2018, 142, p 406–421.

    Article  CAS  Google Scholar 

  29. R.A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu and S. Suwas, Texture Development during cold Rolling of Fe–Cr–Ni Alloy-Experiments and Simulations, Philos. Mag., 2017, 97(23), p 1939–1962.

    Article  CAS  Google Scholar 

  30. T.R. Dandekar, A. Kumar, R.K. Khatirkar, D. Mahadule and G. Ayyappan, Multistep Cross Rolling of UNS S32101 Steel: Microstructure, Texture, and Magnetic Properties, J Mater. Eng. Perform., 2021, 30, p 2916–2929.

    Article  CAS  Google Scholar 

  31. Q. Si, H. Xiang and D. Liu, Pitting Corrosion Resistance of Ag-Bearing Duplex Stainless Steel, Corros. Sci. Prot. Technol., 2017, 29, p 476–484.

    CAS  Google Scholar 

  32. H. Xiang, P. Guo and D. Liu, Microstructure and Antibacterial Properties of Ag-bearing Duplex Stainless Steel, Acta Metall. Sin. (China), 2014, 50, p 1210–1216.

    CAS  Google Scholar 

  33. C.X. He and G.F. Li, Phase Diagrams of Precious Metal Alloys and Structure Parameters of Precious Metal Compounds, Metallurgical industry press, Bei Jing, 2010.

    Google Scholar 

  34. K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawase and T. Morimura, Preparation and Antibacterial Properties of Ag-containing Diamond-like Carbon films Prepared by a Combination of Magnetron Sputtering and Plasma Source ion Implantation, Vacuum, 2013, 89, p 179–184.

    Article  CAS  Google Scholar 

  35. A. Kumar, R.K. Khatirkar, D. Chalapathi, G. Kumar and S. Suwas, Microstructure and Texture Development During Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels, Metall. Mater. Trans. A, 2017, 48, p 2349–2362.

    Article  CAS  Google Scholar 

  36. N. Jia, R.L. Peng, Y.D. Wang, S. Johansson and P.K. Liaw, Micromechanical Behavior and Texture Evolution of Duplex Stainless Steel Studied by Neutron Diffraction and Self-consistent Modeling, Acta Mater., 2008, 56, p 782–793.

    Article  CAS  Google Scholar 

  37. T. Waterschoot, L. Kestens and B.C. De Cooman, Hot Rolling Texture Development in CMnCrSi Dual-phase Steels, Metall. Mater. Trans. A, 2002, 33, p 1091–1102.

    Article  Google Scholar 

  38. M. Zaid and P.P. Bhattacharjee, Microstructure, Texture, and Tensile Properties of a Severely Warm-rolled and Annealed Duplex Stainless Steel, Steel Res. Int., 2016, 87, p 472–483.

    Article  Google Scholar 

  39. A. Mandal, S. Patra, D. Chakrabarti and S.B. Singh, Effect of Rolling and Subsequent Annealing on Microstructure, Microtexture, and Properties of an Experimental Duplex Stainless Steel, Metall. Mater. Trans. A, 2017, 48, p 5960–5977.

    Article  CAS  Google Scholar 

  40. J.J. Jonas, Effects of Shear band Formation on Texture Development in Warm-rolled IF Steels, J. Mater. Process Tech., 2001, 117, p 293–299.

    Article  CAS  Google Scholar 

  41. L. Ryde, Application of EBSD to Analysis of Microstructures in Commercial Steels, Mater. Sci. Tech., 2006, 22, p 1297–1306.

    Article  CAS  Google Scholar 

  42. K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem and K.M. Deen, Corrosion Behavior of Cold-rolled and Post Heat-treated 316L Stainless Steel in 0.9wt% NaCl Solution, Int. J. Min. Met. Mater., 2021, 28, p 440–449.

    Article  CAS  Google Scholar 

  43. S. Masroor, M. Mobin, M.J. Alam and S. Ahmad, The Novel Iminium Surfactant p -benzylidene Benzyldodecyl Iminium Chloride as a Corrosion Inhibitor for Plain Carbon Steel in 1 M HCl: Electrochemical and DFT Evaluation, RSC Adv., 2017, 7, p 23182–23196.

    Article  CAS  Google Scholar 

  44. W. Zhang and J. Hu, Effect of Annealing Temperature on Transformation Induced Plasticity Effect of a Lean Duplex Stainless Steel, Mater. Charact., 2013, 79, p 37–42.

    Article  CAS  Google Scholar 

  45. M. Moallemi, A. Zarei-Hanzaki and H.S. Baghbadorani, Evolution of Microstructure and Mechanical Properties in a cold Deformed Nitrogen Bearing TRIP-assisted Duplex Stainless Steel after Reversion Annealing, Mater. Sci. Eng. A, 2017, 683, p 83–89.

    Article  CAS  Google Scholar 

  46. H.I. Aaronson, K.A. John, N.R. Adsit, Book ASM Metal handbook, ASM international 1992.

  47. M. Zhu, Q. Zhang, Y. Yuan and S. Guo, Effect of Microstructure and Passive film on Corrosion Resistance of 2507 Super Duplex Stainless Steel Prepared by Different Cooling Methods in Simulated Marine Environment, Int. J. Min. Met. Mater., 2020, 27, p 1100–1114.

    Article  CAS  Google Scholar 

  48. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo and I. Calliari, Effects of Cold Rolling and Strain-induced Martensite Formation in a SAF 2205 Duplex Stainless Steel, Metall. Mater. Trans. A, 2015, 46, p 577–586.

    Article  CAS  Google Scholar 

  49. A.A. Tianmiyu, U. Eduok and A.G. Odeshi, Effect of Prior Plastic Deformation and Deformation rate on the Corrosion Resistance of AISI 321 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 745, p 1–9.

    Article  Google Scholar 

  50. Q. Ran, W. Xu, Z. Wu, J. Li, Y. Xu, X. Xiao, J. Hu and L. Jiang, Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 5037–5048.

    Article  CAS  Google Scholar 

  51. D.A. Hughes, N. Hansen and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scripta Mater., 2003, 48, p 147–153.

    Article  CAS  Google Scholar 

  52. D.A. Hughes and N. Hansen, Microstructure and Strength of Nickel at Large Strains, Acta Mater., 2000, 48, p 2985–3004.

    Article  CAS  Google Scholar 

  53. V. Randle, The Role of the Conincidence Site Lattice in Grain Boundary Engineering, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  54. S. Xia, B.X. Zhou, W.J. Chen, and W.G. Wang, Effects of Strain and Annealing Processes on the Distribution of Σ3 Boundaries in a Ni-Based Superalloy, Scripta Mater., 2006, 54, p 2019–2022.

    Article  CAS  Google Scholar 

  55. D. An, T.A. Griffiths, P. Konijnenberg, S. Mandal, Z. Wang, and S. Zaefferer, Correlating the Five Parameter Grain Boundary Character Distribution and the Intergranular Corrosion Behaviour of a Stainless Steel using 3D Orientation Microscopy Based on Mechanical Polishing Serial Sectioning, Acta Mater., 2018, 156, p 297–309.

    Article  CAS  Google Scholar 

  56. T. Fujii, K. Tohgo, Y. Mori, and Y. Shimamura, Crystallography of Intergranular Corrosion in Sensitized Austenitic Stainless Steel, Mater. Charact., 2018, 144, p 219–226.

    Article  CAS  Google Scholar 

  57. S. Tsai, S.K. Makineni, B. Gault, K. Kawano-Miyata, A. Taniyama, and S. Zaefferer, Precipitation Formation on ∑5 and ∑7 Grain Boundaries in 316L Stainless Steel and their Roles on Intergranular Corrosion, Acta Mater., 2021, 210, p 16822.

    Article  Google Scholar 

  58. S.K. Pradhan, P. Bhuyan, L.R. Bairi, and S. Mandal, Comprehending the role of Individual Microstructural Features on Electrochemical Response and Passive Film Behaviour in Type 304 Austenitic Stainless Steel, Corros. Sci., 2021, 180, 109187.

    Article  CAS  Google Scholar 

  59. S. Kobayashi, R. Kobayashi, and T. Watanabe, Control of Grain Boundary Connectivity Based on Fractal Analysis for Improvement of Intergranular Corrosion Resistance in SUS316L Austenitic Stainless Steel, Acta Mater., 2016, 102, p 397–405.

    Article  CAS  Google Scholar 

  60. C.K. Kaithwas, P. Bhuyan, and S. Mandal, Assessing the Potential of Sparsely Nucleated Recrystallized Grains to Lead Grain Boundary Engineering During Extending Annealing in Alloy 600H, Mater. Charact., 2020, 168, 110538.

    Article  CAS  Google Scholar 

  61. C.A. Schuh, M. Kumar, and W.E. King, Analysis of Grain Boundary Networks and their Evolution During Grain Boundary Engineering, Acta Mater., 2003, 51, p 687–700.

    Article  CAS  Google Scholar 

  62. B.R. Kumar, R. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, and D.K. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI 304L Stainless Steel, Mater. Charact., 2005, 54, p 141–147.

    Article  CAS  Google Scholar 

  63. A. Shahryari, J.A. Szpunar, and S. Omanovic, The Influence of Crystallographic Orientation Distribution on 316LVM Stainless Steel Pitting Behavior, Corros. Sci., 2009, 51, p 677–682.

    Article  CAS  Google Scholar 

  64. M. Liu, D. Qiu, M.C. Zhao, G. Song, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scripta Mater., 2008, 58, p 421–424.

    Article  CAS  Google Scholar 

  65. G.Y. Zhu, Y.Y. Li, B.S. Hou, Q.H. Zhang, and G.A. Zhang, Corrosion Behavior of 13Cr Stainless Steel under Stress and Crevice in High Pressure CO2/O2 Environment, J Mater Sci. Tech., 2021, 88, p 79–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51601039 and 51301040), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01454), and the Open Test Fund for Valuable Instruments and Equipment of Fuzhou University (No. 2020T18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Deng or Hongliang Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Xia, J., Wang, B. et al. Effect of Cold Rolling and Subsequent Annealing on the Corrosion Resistance of Ag-Containing CD4MCu Duplex Stainless Steels. J. of Materi Eng and Perform 32, 1645–1659 (2023). https://doi.org/10.1007/s11665-022-07226-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07226-0

Keywords

Navigation